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Introduction

@ Preliminaries: Kripke frames generalized to pointed stably
supported quantales;

@ Facts: Best-known modal logics (K, T, K4, S4, S5...) S& C
w.r.t. quantale-based semantics;

@ Observation: Sahlqvist correspondence-type arguments
underly each such instance;

@ Aim: Develop a three-sided Sahlqvist-style correspondence
theory, involving

e a modal logic language,
e its associated first-order frame correspondence language,
e the language of stably supported quantales.
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Unital involutive quantales

Quantales: complete \/-semilattices

- noncommutative
associative, completely distributive:

c-VS=Vesc-s
VS-c=Vess-c

Q=(Q.V.)
quantale

Every quantale is a complete (non distributive) lattice
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Unital involutive quantales

Quantales: complete \/-semilattices

- noncommutative
associative, completely distributive:

c-VS=Vesc-s

VS-c=Vess-c
productunit: c-e=c=e-c

Q=(Q.V,e)
unital quantale
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Unital involutive quantales

- noncommutative
associative, completely distributive:

c-VS=Vesc-s

VS-c=Vess-c
productunit: c-e=c=e-c

involution: ¢ = ¢

Q=(Q.V,e") (c-q)"=q-c
unital involutive quantale (VS) = Vees S*
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Stably supported quantales

Q = (Qa \/’ K] e’* )
unital involutive quantale
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Q=(Q,V,.er)
unital involutive quantale
Qe = el
unital involutive subguantale of Q
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Stably supported quantales
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Stably supported quantales

Support: ¢: Q — Qe
¢is \/-preserving and Ya,b € Q
¢a < aa*
a<ga-a
stable: ¢(ab) < sa

Additional facts on ssq’s:
Q=(Q,V,.er) ¢ is onto, Q. is a locale
unital involutive quantale  For a stable support, 3 =!
Q. =¢el A property rather than extra structure
unital involutive subguantale of Q
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Kripke frames as pointed ssq’s

@ For every set X, (P(X x X),U,o,A,()7") is a ssq:
@ Define ¢ : P(X x X) = P(X x X)
sR=(RoR™M)NA ={(x,x)]|(x,y) € R for some y}

@ Every Kripke frame (X, R) gives rise to a pointed ssq:
(P(X x X),R)

@ pointed ssqg’s as models for K, S4, S5, PDL, intuitionistic
modal logic [MR].

@ Bounded morphisms, bisimulations can be extended to
pointed ssq’s.
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Quantale semantics for modal logic

pu=pPpeAProp | T|LlpAY|leVi|e—y|Op|Opl
Models: N = (Q, a, V) s.t.

@ (@, a) pointed ssq,
@ V : AtProp — Qe.

Extension map: For every model N, [-]y : Fm — Qe

[Pl = V(P)
[evel = [elVvivl
[envl = [ellvl
[e—vl = ¢l - ¥l
[oe]l = s(alel)
[oe] = Vi{deQels(a*d) <[]}
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The Lindenbaum quantale

Bk Lindenbaum algebra for the minimal normal modal logic K.
Lindenbaum quantale for K: the pointed ssq Qx presented by
generators and relations:

@ By is the set of generators,
o forall x, y € By, (« is the selected element):

xvyl = [x]Vvy]
[-x]-[x] = 0
[-x]vIx] = e

[Oox] = [s(a[x])].
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The Lindenbaum quantale

Bk Lindenbaum algebra for the minimal normal modal logic K.
Lindenbaum quantale for K: the pointed ssq Qx presented by
generators and relations:

@ By is the set of generators,
o forall x, y € By, (« is the selected element):

xvyl = [x]Vvy]
[-x]-[x] = 0
[-x]vIx] = e

[Oox] = [s(a[x])].

Lindenbaum quantales for T, K4, S4, and S5: pointed ssqgs Qr,
Qk4, Qsa, Qss presented by generators and relations, with the
additional relations:

Qr: e<a Qs aa <
Qss: e<a>aa Qss:e<a=da > aa.
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Correspondence on quantales

[Marcelino, Resende 2007]

For a bimodal frame (L, ¢, #), its associated Lindenbaum pointed
ssq Tk(L) and its quotients Tr(L), Tk4(L)... can be constructed,
in such a way that:
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For a bimodal frame (L, ¢, #), its associated Lindenbaum pointed
ssq Tk(L) and its quotients Tr(L), Tk4(L)... can be constructed,
in such a way that:
@ if L = x < Ox and x < #x hold, then the injection of
generators L — T7(L) is an iso.
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[Marcelino, Resende 2007]

For a bimodal frame (L, ¢, #), its associated Lindenbaum pointed
ssq Tk(L) and its quotients Tr(L), Tk4(L)... can be constructed,
in such a way that:

@ if L = x < Ox and x < #x hold, then the injection of
generators L — T7(L) is an iso.

0 if L = OOXx < Ox and ¢ex < &x hold, then the injection of
generators L — Tka(L) is an iso.
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Correspondence on quantales

[Marcelino, Resende 2007]

For a bimodal frame (L, ¢, #), its associated Lindenbaum pointed
ssq Tk(L) and its quotients Tr(L), Tk4(L)... can be constructed,
in such a way that:
o if L = x < Ox and x < &x hold, then the injection of
generators L — T7(L) is an iso.
0 if L = OOXx < Ox and ¢ex < &x hold, then the injection of
generators L — Tka(L) is an iso.

@ Same for S4 and S5...
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o If L = \V{p(x) ¢ ed) < Viw(x)|ye v} and
Vie*(x) | ¢ € ®} < V{y*(x) | ¢ € ¥} for  and ¥ sets of
string-of-diamonds type formulas, then the injection of
generators into the quotient of Tk (L) generated by the
corresponding “relational” condition
Vi{ug | ¢ € D} < \{uy | ¥ € V}is an isomorphism.
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Preliminary results

o If L = \V{p(x) ¢ ed) < Viw(x)|ye v} and
Vie*(x) | ¢ € ®} < V{y*(x) | ¢ € ¥} for  and ¥ sets of
string-of-diamonds type formulas, then the injection of
generators into the quotient of Tk (L) generated by the
corresponding “relational” condition
Vi{ug | ¢ € D} < \{uy | ¥ € V}is an isomorphism.

@ Every inequality in the language of ssgs containing only finite
joins is equivalent to a Kracht formula, hence morally
corresponds to a “Sahlqvist” formula.
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