Modal correspondence theory on quantales

Alessandra Palmigiano

joint work with Johannes Martí and Pedro Resende

21 September 2010

(4 冊) (4 回) (4 回)

Introduction

Alessandra Palmigiano Modal correspondence theory on quantales

(日)

æ

• Preliminaries:

< □ > < //>

æ

• <u>Preliminaries</u>: Kripke frames generalized to pointed stably supported quantales;

・ロト ・四ト ・ヨト・ヨト・

- <u>Preliminaries</u>: Kripke frames generalized to pointed stably supported quantales;
- <u>Facts</u>: Best-known modal logics (K, T, K4, S4, S5...) S& C w.r.t. quantale-based semantics;

イロト イポト イヨト イヨト

Introduction

- <u>Preliminaries</u>: Kripke frames generalized to pointed stably supported quantales;
- <u>Facts</u>: Best-known modal logics (K, T, K4, S4, S5...) S& C w.r.t. quantale-based semantics;
- <u>Observation</u>: Sahlqvist correspondence-type arguments underly each such instance;

- <u>Preliminaries</u>: Kripke frames generalized to pointed stably supported quantales;
- <u>Facts</u>: Best-known modal logics (K, T, K4, S4, S5...) S& C w.r.t. quantale-based semantics;
- <u>Observation</u>: Sahlqvist correspondence-type arguments underly each such instance;
- <u>Aim</u>: Develop a three-sided Sahlqvist-style correspondence theory, involving
 - a modal logic language,
 - its associated first-order frame correspondence language,
 - the language of stably supported quantales.

イロト イポト イヨト イヨト

Alessandra Palmigiano Modal correspondence theory on quantales

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

æ

Quantales: complete V-semilattices

イロト イポト イヨト イヨト

Quantales: complete V-semilattices

noncommutative

associative, completely distributive:

・ 同 ト ・ ヨ ト ・ ヨ ト

Every quantale is a complete (non distributive) lattice

イロト イポト イヨト イヨト

Quantales: complete V-semilattices

noncommutative

associative, completely distributive:

$$c \cdot igvee S = igvee_{s \in S} c \cdot s$$

$$\bigvee {\tt S} \cdot {\tt c} = \bigvee_{{\tt s} \in {\tt S}} {\tt s} \cdot {\tt c}$$

product unit: $c \cdot e = c = e \cdot c$

< A ► < E ►

unital quantale

unital involutive quantale

noncommutative

associative, completely distributive:

$$c \cdot igee S = igee_{s \in S} \, c \cdot s$$

$$igee {f S}\cdot {f c} = igee_{{f s}\in {f S}}\,{f s}\cdot {f c}$$

product unit: $c \cdot e = c = e \cdot c$

involution: $c^{**} = c$

$$(oldsymbol{c} \cdot oldsymbol{q})^* = oldsymbol{q}^* \cdot oldsymbol{c}^* \ (ee oldsymbol{S})^* = ee_{oldsymbol{s} \in oldsymbol{S}} oldsymbol{s}^*$$

▲ 伊 ▶ ▲ ヨ ▶

Alessandra Palmigiano Modal correspondence theory on quantales

・ロト ・四ト ・ヨト・ヨト・

æ

▲冊▶ ▲屋▶ ▲屋▶

е $Q = (Q, \bigvee, \cdot, e, *)$ unital involutive quantale $Q_{e} = e \downarrow$ unital involutive subquantale of Q

Support: $\varsigma : Q \rightarrow Q_e$

周下 イヨト イヨト

е $Q = (Q, \bigvee, \cdot, e, *)$ unital involutive quantale $Q_e = e \downarrow$ unital involutive subquantale of Q

Support: $\varsigma : Q \to Q_e$ ς is \lor -preserving and $\forall a, b \in Q$

е $Q = (Q, \bigvee, \cdot, e,^*)$ unital involutive quantale $Q_e = e \downarrow$ unital involutive subquantale of Q

Support: $\varsigma : Q \to Q_e$ ς is \lor -preserving and $\forall a, b \in Q$ $\varsigma a \leq aa^*$

Support: $\varsigma : Q \to Q_{e}$ ς is \lor -preserving and $\forall a, b \in Q$ $\varsigma a \leq aa^{*}$ $a \leq \varsigma a \cdot a$

・ 同 ト ・ ヨ ト ・ ヨ ト

Support: $\varsigma : Q \to Q_e$ ς is \lor -preserving and $\forall a, b \in Q$ $\varsigma a \leq aa^*$ $a \leq \varsigma a \cdot a$ stable: $\varsigma(ab) \leq \varsigma a$

・ 同 ト ・ ヨ ト ・ ヨ ト

Support: $\varsigma : Q \to Q_e$ ς is \lor -preserving and $\forall a, b \in Q$ $\varsigma a \le aa^*$ $a \le \varsigma a \cdot a$ stable: $\varsigma(ab) \le \varsigma a$

Additional facts on ssq's:

 $Q = (Q, \lor, \cdot, e, *)$ unital involutive quantale

$$Q_{e}=e_{x}$$

unital involutive subquantale of Q

Support: $\varsigma : Q \to Q_e$ ς is \lor -preserving and $\forall a, b \in Q$ $\varsigma a \leq aa^*$ $a \leq \varsigma a \cdot a$ stable: $\varsigma(ab) \leq \varsigma a$

Additional facts on ssq's: ς is onto, Q_e is a locale

< A > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B >

Support: $\varsigma : Q \to Q_e$ ς is \lor -preserving and $\forall a, b \in Q$ $\varsigma a \le aa^*$ $a \le \varsigma a \cdot a$ stable: $\varsigma(ab) \le \varsigma a$

Additional facts on ssq's: ς is onto, Q_e is a locale For a stable support, $\exists \Rightarrow !$

< A > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B >

unital involutive subquantale of Q

Support: $\varsigma : Q \to Q_e$ ς is \lor -preserving and $\forall a, b \in Q$ $\varsigma a \leq aa^*$ $a \leq \varsigma a \cdot a$ stable: $\varsigma(ab) \leq \varsigma a$

• □ ▶ • □ ▶ • □ ▶ • □ ▶

VAdditional facts on ssq's: $Q = (Q, \lor, \cdot, e, *)$ ς is onto, Q_e is a localeunital involutive quantaleFor a stable support, $\exists \Rightarrow !$ $Q_e = e \downarrow$ A property rather than extra structureunital involutive subquantale of Q

• For every set X, $(\mathcal{P}(X \times X), \bigcup, \circ, \Delta, ()^{-1})$ is a ssq:

・ロト ・四ト ・ヨト・ヨト・

• For every set X, $(\mathcal{P}(X \times X), \bigcup, \circ, \Delta, ()^{-1})$ is a ssq:

• Define
$$\varsigma : \mathcal{P}(X \times X) \to \mathcal{P}(X \times X)$$

 $\varsigma R = (R \circ R^{-1}) \cap \Delta = \{(x, x) \mid (x, y) \in R \text{ for some } y\}$

ヘロト 人間 ト 人間 ト 人間 トー

For every set X, (P(X × X), ∪, ∘, Δ, ()⁻¹) is a ssq:

• Define
$$\varsigma : \mathcal{P}(X \times X) \to \mathcal{P}(X \times X)$$

 $\varsigma R = (R \circ R^{-1}) \cap \Delta = \{(x, x) \mid (x, y) \in R \text{ for some } y\}$

 Every Kripke frame (X, R) gives rise to a *pointed* ssq: (P(X × X), R)

ヘロト 人間 ト 人間 ト 人間 トー

For every set X, (P(X × X), ∪, ∘, Δ, ()⁻¹) is a ssq:

• Define
$$\varsigma : \mathcal{P}(X \times X) \to \mathcal{P}(X \times X)$$

 $\varsigma R = (R \circ R^{-1}) \cap \Delta = \{(x, x) \mid (x, y) \in R \text{ for some } y\}$

- Every Kripke frame (X, R) gives rise to a *pointed* ssq: (P(X × X), R)
- pointed ssq's as models for K, S4, S5, PDL, intuitionistic modal logic [MR].

• For every set X, $(\mathcal{P}(X \times X), \bigcup, \circ, \Delta, ()^{-1})$ is a ssq:

• Define
$$\varsigma : \mathcal{P}(X \times X) \to \mathcal{P}(X \times X)$$

 $\varsigma R = (R \circ R^{-1}) \cap \Delta = \{(x, x) \mid (x, y) \in R \text{ for some } y\}$

- Every Kripke frame (X, R) gives rise to a *pointed* ssq: (P(X × X), R)
- pointed ssq's as models for K, S4, S5, PDL, intuitionistic modal logic [MR].
- Bounded morphisms, bisimulations can be extended to pointed ssq's.

Alessandra Palmigiano Modal correspondence theory on quantales

ヘロト 人間 ト 人間 ト 人間 トー

æ

 $\varphi ::= p \in \mathsf{AtProp} \mid \top \mid \bot \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \to \psi \mid \Box \varphi \mid \Diamond \varphi \mid$

イロト イヨト イヨト イヨト

 $\varphi ::= p \in \mathsf{AtProp} \mid \top \mid \perp \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \to \psi \mid \Box \varphi \mid \Diamond \varphi \mid \\ \underline{\mathsf{Models}}: N = (Q, a, V) \text{ s.t.}$

イロト イヨト イヨト イヨト

 $\varphi ::= p \in \mathsf{AtProp} \mid \top \mid \perp \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \to \psi \mid \Box \varphi \mid \Diamond \varphi \mid$ <u>Models</u>: N = (Q, a, V) s.t.

(Q, a) pointed ssq,

イロト イヨト イヨト イヨト

 $\varphi ::= p \in \text{AtProp} \mid \top \mid \perp \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \to \psi \mid \Box \varphi \mid \Diamond \varphi \mid \\ \underline{\text{Models}}: N = (Q, a, V) \text{ s.t.}$

- (Q, a) pointed ssq,
- V : AtProp $\rightarrow Q_e$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

 $\varphi ::= p \in \mathsf{AtProp} \mid \top \mid \bot \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \to \psi \mid \Box \varphi \mid \Diamond \varphi \mid \\ \underline{\mathsf{Models}}: N = (Q, a, V) \text{ s.t.}$

- (Q, a) pointed ssq,
- V : AtProp $\rightarrow Q_e$.

Extension map: For every model N, $\llbracket \cdot \rrbracket_N : Fm \to Q_e$

$$\begin{bmatrix} p \end{bmatrix} = V(P) \\ \begin{bmatrix} \varphi \lor \psi \end{bmatrix} = \begin{bmatrix} \varphi \end{bmatrix} \lor \begin{bmatrix} \psi \end{bmatrix} \\ \begin{bmatrix} \varphi \land \psi \end{bmatrix} = \begin{bmatrix} \varphi \end{bmatrix} [\psi] \\ \begin{bmatrix} \varphi \land \psi \end{bmatrix} = \begin{bmatrix} \varphi \end{bmatrix} [\psi] \\ \begin{bmatrix} \varphi \rightarrow \psi \end{bmatrix} = \begin{bmatrix} \varphi \end{bmatrix} \rightarrow \begin{bmatrix} \psi \end{bmatrix} \\ \begin{bmatrix} \varphi \varphi \end{bmatrix} = \varsigma(a \llbracket \varphi \rrbracket) \\ \begin{bmatrix} \Box \varphi \end{bmatrix} = \lor \{d \in Q_e \mid \varsigma(a^*d) \le \llbracket \varphi \rrbracket \}$$

ヘロト 人間 ト 人間 ト 人間 トー

Alessandra Palmigiano Modal correspondence theory on quantales

・ロト ・ 御 ト ・ 国 ト ・ 国 ト

æ

 B_K Lindenbaum algebra for the minimal normal modal logic K.

 B_K Lindenbaum algebra for the minimal normal modal logic K. Lindenbaum quantale for K: the pointed ssq Q_K presented by generators and relations:

▲冊▶ ▲陸▶ ▲陸▶

 B_K Lindenbaum algebra for the minimal normal modal logic K. Lindenbaum quantale for K: the pointed ssq Q_K presented by generators and relations:

• *B_K* is the set of generators,

・ 同 ト ・ ヨ ト ・ ヨ

 B_K Lindenbaum algebra for the minimal normal modal logic K. Lindenbaum quantale for K: the pointed ssq Q_K presented by generators and relations:

- *B_K* is the set of generators,
- for all $x, y \in B_K$, (α is the selected element):

$$\begin{array}{lll} [x \lor y] &=& [x] \lor [y] \\ [\neg x] \cdot [x] &=& 0 \\ [\neg x] \lor [x] &=& e \\ [\diamondsuit x] &=& [\varsigma(\alpha[x])]. \end{array}$$

(4月) (4日) (4日)

 B_K Lindenbaum algebra for the minimal normal modal logic K. Lindenbaum quantale for K: the pointed ssq Q_K presented by generators and relations:

- *B_K* is the set of generators,
- for all $x, y \in B_K$, (α is the selected element):

$$\begin{array}{lll} [x \lor y] &=& [x] \lor [y] \\ [\neg x] \cdot [x] &=& 0 \\ [\neg x] \lor [x] &=& e \\ [\diamondsuit x] &=& [\varsigma(\alpha[x])]. \end{array}$$

Lindenbaum quantales for T, K4, S4, and S5: pointed ssqs Q_T , $\overline{Q_{K4}, Q_{S4}, Q_{S5}}$ presented by generators and relations, with the additional relations:

$$\begin{array}{ll} Q_{\mathsf{T}}: \ {\boldsymbol{e}} \leq \alpha & \qquad Q_{\mathsf{K4}}: \alpha \alpha \leq \alpha \\ Q_{\mathsf{S4}}: \ {\boldsymbol{e}} \leq \alpha \geq \alpha \alpha & \qquad Q_{\mathsf{S5}}: {\boldsymbol{e}} \leq \alpha = \alpha^* \geq \alpha \alpha. \end{array}$$

Correspondence on quantales

Alessandra Palmigiano Modal correspondence theory on quantales

イロト イヨト イヨト イヨト

For a bimodal frame $(L, \diamond, \blacklozenge)$, its associated Lindenbaum pointed ssq $T_{\mathcal{K}}(L)$ and its quotients $T_{\mathcal{T}}(L)$, $T_{\mathcal{K}4}(L)$... can be constructed, in such a way that:

• □ ▶ • □ ▶ • □ ▶ • □ ▶

For a bimodal frame $(L, \diamond, \blacklozenge)$, its associated Lindenbaum pointed ssq $T_{\mathcal{K}}(L)$ and its quotients $T_{\mathcal{T}}(L)$, $T_{\mathcal{K}4}(L)$... can be constructed, in such a way that:

if L ⊨ x ≤ ◊x and x ≤ ♦x hold, then the injection of generators L → T_T(L) is an iso.

For a bimodal frame $(L, \diamond, \blacklozenge)$, its associated Lindenbaum pointed ssq $T_{\mathcal{K}}(L)$ and its quotients $T_{\mathcal{T}}(L)$, $T_{\mathcal{K}4}(L)$... can be constructed, in such a way that:

- if L ⊨ x ≤ ◊x and x ≤ ♦x hold, then the injection of generators L → T_T(L) is an iso.
- if L ⊨ ◊◊x ≤ ◊x and ♦♦x ≤ ♦x hold, then the injection of generators L → T_{K4}(L) is an iso.

イロト イポト イヨト イヨト

For a bimodal frame $(L, \diamond, \blacklozenge)$, its associated Lindenbaum pointed ssq $T_{\mathcal{K}}(L)$ and its quotients $T_{\mathcal{T}}(L)$, $T_{\mathcal{K}4}(L)$... can be constructed, in such a way that:

- if L ⊨ x ≤ ◊x and x ≤ ♦x hold, then the injection of generators L → T_T(L) is an iso.
- if L ⊨ ◊◊x ≤ ◊x and ♦♦x ≤ ♦x hold, then the injection of generators L → T_{K4}(L) is an iso.
- Same for S4 and S5...

イロト イポト イヨト イヨト

Preliminary results

Alessandra Palmigiano Modal correspondence theory on quantales

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

æ

Preliminary results

 If L ⊨ ∨{φ(x) | φ ∈ Φ} ≤ ∨{ψ(x) | ψ ∈ Ψ} and ∨{φ*(x) | φ ∈ Φ} ≤ ∨{ψ*(x) | ψ ∈ Ψ} for Φ and Ψ sets of string-of-diamonds type formulas, then the injection of generators into the quotient of *T_K*(*L*) generated by the corresponding "relational" condition ∨{*u_φ* | φ ∈ Φ} ≤ ∨{*u_ψ* | ψ ∈ Ψ} is an isomorphism.

- If L ⊨ ∨{φ(x) | φ ∈ Φ} ≤ ∨{ψ(x) | ψ ∈ Ψ} and ∨{φ*(x) | φ ∈ Φ} ≤ ∨{ψ*(x) | ψ ∈ Ψ} for Φ and Ψ sets of string-of-diamonds type formulas, then the injection of generators into the quotient of *T_K*(*L*) generated by the corresponding "relational" condition ∨{*u_φ* | φ ∈ Φ} ≤ ∨{*u_ψ* | ψ ∈ Ψ} is an isomorphism.
- Every inequality in the language of ssqs containing only finite joins is equivalent to a Kracht formula, hence morally corresponds to a "Sahlqvist" formula.

イロト イポト イヨト イヨト