
Concurrent Kleene Algebras

Georg Struth

University of Sheffield

joint work with T Hoare, B Möller and I Wehrman

Motivation

Kleene algebras: models for sequential programs, refinement, action systems

process algebras: models for concurrency/communication

• axioms similar to KAs, but based on near-semirings
• x(y + z) = xy + xz absent, hence no language models
• problems with axiomatisation of star
• concurrency (as interleaving) inductively defined on actions/processes

separation logic: models for local reasoning (pointer structures on heap)

• seemingly unrelated
• but separating conjunction yields conditions for sequential/concurrent

executions

idea: add concurrency to Kleene algebra à la separating conjunction

Aggregation and Independency

aggregation algebra: structure (A,+) with operation + : A→ A

• p+ q denotes system aggregated from parts p and q
• first, A absolutely free
• later it will be semigroup or monoid

independence relation: bilinear binary relation R on A

R(p+ q, r)⇔ R(p, r) ∧R(q, r), R(p, q + r)⇔ R(p, q) ∧R(p, r)

• p independent of q if R(p, q)

• aggregate doesn’t depend on system iff its parts don’t dependend on it

• system doesn’t depend on aggregate iff it doesn’t depend on its parts

Examples

1. for aggregation algebra (2A,∪) and X,Y ⊆ A, the relation R(X,Y) iff X,Y
disjoint is independence relation

2. for digraphs (G,∪) under (disjoint) union, R(g1, g2) iff there is no arrow with
source in g1 and target in g2 is independence relation

3. for subspaces of some vector space with respect to span, orthogonality is an
independence relation.

4. if subtrees t1, t2 of tree t are in R if their roots are not on t-path and if t1 + t2
is least t-subtrees with subtrees t1, t2, then R is no dependence relation
(subtee of t1 + t2 needn’t be subtree of t1, t2)

Properties

lemma: for aggregation algebra (A,+) and independence relation R

1. R((p+ q) + r, s)⇔ R(p+ (q + r), s)

2. R(p, (q + r) + s)⇔ R(p, q + (r + s))

3. R(p+ q, r)⇔ R(q + p, r)

4. R(p, q + r)⇔ R(p, r + q)

5. R(p+ p, q)⇔ R(p, q)

6. R(p, q + q)⇔ R(p, q)

Properties

proposition: relations

p ≈l q ⇔ ∀r.(R(p, r)⇔ R(q, r)) p ≈r q ⇔ ∀r.(R(r, p)⇔ R(r, q))

induce same congruence as semilattice identities on A

consequence: aggregates behave like sets with respect to independency

Properties

lemma: for aggregation algebra (A,+) and independence relation R

R(p+ q, r) ∧R(p, q)⇔ R(q, r) ∧R(p, q + r)

proof: diagrams

consequence: write as (p→ q)→ r = p→ (q → r)

Properties

lemma: for aggregation algebra (A,+) and independence relations R,S
with R ⊆ S,

1. R(p+ q, r) ∧ S(p, q)⇒ S(p, q + r) ∧R(q, r)

2. R(p, q + r) ∧ S(q, r)⇒ S(p+ q, r) ∧R(p, q)

proofs: use diagrams

consequence: write as

(p→ q) ; r ≤ p→ (q ; r) and p ; (q → r) ≤ (p ; q)→ r

Properties

exchange law: for aggregation algebra (A,+) and independence relations R,S
with R ⊆ S and S symmetric

R(p+ q, r + s) ∧ S(p, q) ∧ S(r, s)⇒ R(p, r) ∧R(q, s) ∧ S(p+ r, q + s)

proof: see diagram or calculate

R(p + q, r + s)∧S(p, q) ∧ S(r, s)

⇔ R(p, r) ∧ R(q, r) ∧ R(p, s) ∧ R(q, s) ∧ S(p, q) ∧ S(r, s)

⇒ R(p, r) ∧ S(q, r) ∧ S(p, s) ∧ R(q, s) ∧ S(p, q) ∧ S(r, s)

⇒ R(p, r) ∧ R(q, s) ∧ S(r, q) ∧ S(p + r, s) ∧ S(p, q)

⇒ R(p, r) ∧ R(q, s) ∧ S(p + r, q) ∧ S(p + r, s)

⇔ R(p, r) ∧ R(q, s) ∧ S(p + r, q + s)

consequence: write as (p→ q) ; (r → s) ≤ (p ; r)→ (q ; s)

Algebraisation

idea:

• interpret dependency arrows as algebraic operations
• lift to powerset level

extension: bistrict independence relations: R(p, 0) and R(0, p)

complex product: for aggregation algebra (A,+) and independence relation R
define ◦R : 2A × 2A → 2A by

X ◦R Y = {p+ q : p ∈ X ∧ q ∈ Y ∧R(p, q)}

example: if X,Y are languages, + is string concatenation and R is universal
relation, then ◦R is language product

Algebraisation

proposition:

1. if (A,+) is semigroup and R bilinear, then (2A, ◦R) is semigroup
2. if (A,+, 0) is monoid and R bilinear bistrict, then (2A, ◦R, {0}) is monoid

proof: simple but tedious (using relation-level “associativity”). . .

proposition:

1. if (A,+) is semigroup and R bilinear, then (2A,∪, ◦R, ∅) is dioid
2. if (A,+, 0) is monoid and R bilinear bistrict, then (2A,∪, ◦R, ∅, {0})

is dioid with 1

proof: set theory. . .

remark: even infinite distributivity laws hold

Algebraisation

theorem: if (A,+, 0) is monoid and R bilinear bistrict, then (2A,∪, ◦R, ∅, {0}, ∗)
is Kleene algebra, where

X∗ =
⋃
i≥0

Xi

as in language theory

proof:

• X∗ exists by completeness of semilattice reduct of dioid
• verifying KA star axioms is routine

discussion: KA deals with sequentiality in the sense that parts of a system can be
aggregated “before” other parts only if the former don’t depend on the latter

Modelling Concurrency

idea: make independency relation symmetric

• complex product X ◦S Y = {p+ q : p ∈ X ∧ q ∈ Y ∧ S(p, q)}
only aggregates elements that are mutually independent
• in that case, p and q can be executed concurrently

lemma: if (A,+) is semigroup and S bilinear symmetric, then (2A, ◦S) is
commutative semigroup

theorem: if (A,+, 0) is monoid and S bilinear bistrict symmetric,
then (2A,∪, ◦S, ∅, {0}, ?) is commutative Kleene algebra

remark: commutative KAs have been studied by Conway/Pilling

Concurrent Kleene Algebras

idea: combine sequential and concurrent composition

definition:

• bisemigroup : (S, •, ◦) with (S, •) and (S, ◦) semigroups
• bimonoid: (S, •, ◦, 1) with (S, •, 1) and (S, ◦, 1) monoids
• trioid: (S,+, •, ◦, 0, 1) with (S,+, •, 0, 1) and (S,+, ◦, 0) dioids
• bi-Kleene algebra: (S,+, •, ◦, ∗, ?, 0, 1) with (S,+, •, ∗, 0, 1)

and (S,+, ◦, ?, 0, 1) KAs

theorem: if (A,+, 0) is monoid, R,S bilinear bistrict, then

• (2A,∪, ◦R, ◦S, ∅, {0}) is trioid
• (2A,∪, ◦R, ◦S, ∗, ?, ∅, {0}) is bi-KA

Concurrent Kleene Algebras

but: structure of R,S not taken into account

• S symmetric, hence ◦S commutative
• R ⊆ S, hence X ◦R Y ⊆ X ◦S Y

lemma: if (A,+) semigroup and R,S bilinear with R ⊆ S, then

1. (x ◦S y) ◦R z ⊆ x ◦S (y ◦R z)
2. x ◦R (y ◦S z) ⊆ (x ◦R y) ◦S z

proof: use R(p+ q, r) ∧ S(p, q)⇒ S(p, q + r) ∧R(q, r) and its dual

Concurrent Kleene Algebras

exchange law: if (A,+) semigroup, R,S bilinear, R ⊆ S and S symmetric, then

(w ◦S x) ◦R (y ◦S z) ⊆ (w ◦R y) ◦S (x ◦R z)

proof: use R(p + q, r + s) ∧ S(p, q) ∧ S(r, s)⇒ R(p, r) ∧ R(q, s) ∧ S(p + r, q + s)

remark: lifting of relational properties to algebraic properties

Concurrent Kleene Algebras

definition:

• concurrent semigroup: ordered bisemigroup (S, •, ◦) that satisfies

x • y ≤ x ◦ y, x ◦ y = y ◦ x,
(x ◦ y) • z ≤ x ◦ (y • z), x • (y ◦ z) ≤ (x • y) ◦ z,

(w ◦ x) • (y ◦ z) ≤ (w • y) ◦ (x • z)

• concurrent monoid: ordered bimonoid (S, •, ◦, 1) that satisfies

x • y ≤ x ◦ y, x ◦ y = y ◦ x, (w ◦ x) • (y ◦ z) ≤ (w • y) ◦ (x • z)

lemma: (x ◦ y) • z ≤ x ◦ (y • z) and x • (y ◦ z) ≤ (x • y) ◦ z hold
in concurrent monoids

Concurrent Kleene Algebras

concurrent Kleene algebra: bi-KA (S,+, •, ◦, ∗, ?, 0, 1) over concurrent monoid

therefore: CKAs consist of KA and commutative KA that interact as follows:

• sequential composition includes concurrent composition
• exchange law holds

theorem: if (A,+, 0) monoid, R,S bilinear bistrict, R ⊆ S and S symmetric,
then (2A,∪, ◦R, ◦S, ∗, ?, ∅, {0}) is concurrent Kleene algebra

proof:

• again only monoid case is interesting (see above lemmas)
• stars exist/defined due to infinite distributivity laws

Sequential and Concurrent Compositions

aggregation algebra: distributive lattice (A,+, ·, 0) with operator f : A→ A

example: f (pre)image operator on relational structure

composition operations:

• fine-grain concurrent composition X ? Y with R?(p, q)⇔ p · q = 0
(dependencies between X and Y ignored)

• weak sequential composition X;Y with R;(p, q)⇔ R?(p, q) ∧ f(p) · q = 0
(no dependency of X on Y)

• disjoint parallel composition X||Y with R||(p, q)⇔ R;(p, q) ∧ p · f(q) = 0
(no dependency in either direction)

• alternation X ⊕ Y with R⊕(p, q)⇔ p = 0 ∨ q = 0
(at most one of X,Y executed)

Sequential and Concurrent Compositions

lemma:

1. R⊕ ⊆ R|| ⊆ R; ⊆ R?

2. all compositions are bilinear bistrict
3. all except R; are symmetric

consequence: for (A,+, ·, 0, f) and any concurrent composition relation RC,
(2A,∪, ; , ◦C, ∗,C, ∅, {0}) is CKA

remark: sometimes dual order needs to be taken

question: is independency model canonical?

Shuffle Dioids

shuffle dioid: dioid (S,+, ·, 0, 1) finitely generated by finite Σ and with
shuffle operation ⊗ : S → S satisfying

1⊗ x = x = x⊗ 1, ax⊗ by = a(x⊗ by) + b(ax⊗ y),

x⊗ (y + z) = x⊗ y + x⊗ z

analogy: process algebras such as ACP, CCS

related model: regular languages under regular operations plus shuffle

ε⊗ w = {w} = w ⊗ ε, av ⊗ bw = {a(v ⊗ bw), b(av ⊗ w)},

X ⊗ Y =
⋃
{v ⊗ w : v ∈ X ∧ w ∈ Y }

Shuffle Dioids

lemma: (S,+,⊗, 0, 1) is commutative dioid.

proof: by induction, e.g.,

ax⊗ by = a(x⊗ by) + b(ax⊗ y) = b(y ⊗ ax) + a(by ⊗ x) = by ⊗ ax

lemma: xy ≤ x⊗ y

proof: e.g. axby ≤ a(x⊗ by) ≤ a(x⊗ by) + b(ax⊗ y) = ax⊗ by

Shuffle Dioids

lemma: exchange law (w ⊗ x)(y ⊗ z) ≤ wy ⊗ xz

proof: e.g.

(aw ⊗ bx)(y ⊗ z)= a(w ⊗ bx)(y ⊗ z) + b(aw ⊗ x)(y ⊗ z)
≤ a(wy ⊗ bxz) + b(awy ⊗ xz)
= awy ⊗ bxz

theorem: shuffle dioids (regular languages with shuffle) are concurrent semirings

Free Concurrent Semirings

question: are regular languages with shuffle the free CKAs?

fact: in language model, exchange law is essentially inequation:

(a⊗ a)(b⊗ b) = {aabb} < {aabb, abab} = ab⊗ ab

lemma: in every CKA, v(x⊗ wy) + w(vx⊗ y) ≤ vx⊗ wy

proof: by ATP

intuition: algebraic version of shuffle induction

Free Concurrent Semirings

but: converse inequality fails in CKA

proof: In CKA S = {a} with 0 ≤ a ≤ 1, aa = a and a⊗ a = 1,

a1⊗ a1 = a⊗ a = 1 > a = aa+ aa = a(1⊗ a1) + a(a1⊗ 1)

consequence: CKA is strict superclass of shuffle dioids

question: how can we eliminate ⊗ in CKA?

Free Concurrent Semirings

lemma: following equation doesn’t hold in CKA, but it holds in shuffle semirings:

xy ⊗ xy ≤ x⊗ x(y ⊗ y)

proof: consider CKA over {a, b} defined by 0 < a < b < 1 and tables

· 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a a b
1 0 a b 1

⊗ 0 a b 1
0 0 0 0 0
a 0 1 b a
b 0 b b b
1 0 a b 1

then bb⊗ bb = a⊗ a = 1 > b = b⊗ a = b⊗ bb = b⊗ b(b⊗ b)

Free Concurrent Semirings

proof continued: but in regular languages with shuffle, in

xy ⊗ xy ≤ x⊗ x(y ⊗ y)

• at least one x must first be eaten before consuming y in lhs
• this can be simulated by rhs

consequence: regular languages with shuffle are not free CKAs!

questions:

• what are free CKAs?
• can CKA be extended to characterize shuffle languages?

Conclusion

CKA: extension of KA to concurrent setting

• two models (independency/aggregation, shuffle languages)
• formalisms like Hoare logic and rely/guarantee calculus can be modelled

interesting questions:

• free algebras
• decidability
• expressivity

