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The setting;:
A = HSP(K)

where K is a FINITE lattice-based algebra (ie a lattice with, perhaps, additional
operations).

What can we say about canonical extensions in this case?

Method 1 [Gehrke/Vosmaer]:
Specialize the general theory.

Technique: standard canonical extension methodology.

Method 2 [Davey/Priestley]:
Build in finite generation from the start.

Technique: topological algebra.

ALSO:

Method 3 [Harding, Gouveia, Vosmaer|: profinite completions



Topology

Now you see 1t ...

Now you don't.



Topology

Now you see it . ..

Now you don't.

BUT IT'S THERE!



Exploiting finite generation: a black box

A =HSP(K) (K finite lattice-based)

l

Jonsson’s Lemma

_|_
Birkhoft’s Subdirect Product Theorem

!

A =ISP(M) where M = { My, ..., M} is a FINITE set of FINITE
lattice-based algebras.

We relate canonical extensions directly to M.



Outline

A = ISP(M)

where M = {My,..., M} is a FINITE set of FINITE lattice-based algebras.

We introduce the natural extension n4(A) of A € A: it is a subalgebra of
powers of members of M.

Reconciliation: at the lattice level, n4(A) is a dense and compact

completions of A, so a canonical extension.

As a topological algebra, n4(A) is VERY NICE INDEED.

Reconciliation: the operations of n4(A) coincide with the o- and
m-extensions of those on A.

Reconciliation: with duality approach.



At the lattice level

The canonical extension of a lattice L is a dense and compact completion
C = L° of L: (Formally it is a pair (e, C') where e: L — C, but we normally
identify L with e(L).)

Density: L is Aj-dense (that is, \/ A- and A \/-dense) in C;

Compactness: for every filter F' and every ideal I of L,
ANF<\/I = Fnl+w.

lequivalent conditions exist)|



Classic examples, via duality

e Boolean algebras:

L = clopen subsets of Boolean space X (topologised ultrafilters)
— L° = P(X) (complete atomic BA)

B. Jonsson (1993 survey on BAOs)

‘This |[density 4+ compactness]| is an algebraic way of describing the

extension which arises from Stone’s Duality Theorem.’

e Bounded distributive lattices:

L = clopen up-sets of Priestley space X (topologised prime filters, with C)
— L° = Up(X) (complete dl satisfying ... )

BUT this won’t work for the variety of (bounded) lattices.



Canonical extensions do exist for bounded lattices

Method 1 [Gehrke/Harding 2001]: as Galois-closed sets for the Galois

connection coming from a polarity.

Method 2 [Gehrke/Priestley 2008]: by combining free join- and
meet-completions and then taking MacNeille completion.

Uniqueness: Any concretely constructed dense and compact completion serves

as the canonical extension.



Finitely generated varieties of lattice-based algebras

A few examples:
e De Morgan algebras
e Any variety of MV-algebras generated by a finite chain

e Any variety generated by a finite subdirectly irreducible Heyting algebra,
L © 1, where L is a finite lattice.

In particular; HSP(4) = ISP({4, 3})



The natural extension

Topological conventions

Any finite algebra, when topologised, carries the discrete topology.
Any product of finite algebras then carries the product topology.

Given:  a quasivariety A = ISP({Mq, ..., My}).
Here the M; are finite, but need not be lattice-based for now.

Let A € A. Define
Zi = A(A, M;) (homomorphisms from A into M;)

Then Z,; is a closed subspace of MiA, hence compact.

We can embed A homomorphically into Mlz X oo x M kZ * by multisorted
evaluation:

e : A— H M7 where e (a)(i)(z) = z(a),
SISk for i € {1,...,k} and x € Z; = A(A, M;).

(In fact e4(A) € []1<;<x C(Zis M;).)

NG AN



A key definition:

The natural extension of A is

na(A) :=ey(A) in HM{q(A’Mi),

where e 4(A) denotes the topological closure. SO e, embeds A as a
topologically dense subalgebra of its natural extension.

Theorem: Let A = ISP(M) where M is a finite set of finite lattice-based
algebras. A € A. Then, at the lattice level, n4(A) is a dense and compact
completion, and so a canonical extension.



Contextualising, |

A wealth of dense and compact completions

Let {Ns}scs be a non-empty family of finite lattices.

Closed and complete sublattices

Let C' be a sublattice of | [, ¢ Ns. Then C is topologically closed iff C is a
complete sublattice (= closed under arbitrary non-empty joins and meets).

Dense completions

Let L be a sublattice of | [, ¢ INs. Then L is a Aj-completion of L.

Compact completions

Let Z1,...,Z, be compact spaces, let My, ..., M; be finite lattices. Let L be a
sublattice of C(Zy, M;) x --- x C(Zy,, M},). Then L (taken in M7 x --- x MkZ’“)

is a compact completion of L.



More about the natural extension

illustration for special case ISP(M )]

Extending the operations Let f be a basic operation (unary for simplicity).
Then f lifts pointwise from M to f on n4(A) so as to extend its action on

A= eyA):

AN

(f(e)(x) :=p(fox) forxe A(A, M) and p € ng(A) C MAAM)

Functoriality: follow your nose!

We get a functor from A to Ag := IS.P(M), the class of isomorphic copies of
topologically closed substructures of powers of M (empty structure included).

For u € A(A, B), define ng(u): ng(A) — na(B) by

na(u) :=ulna(A) where (u())(y) := @(you),
for ¢ € M™(A, M) and y € A(B, M).



Summarising

Propaganda for the natural extension:

e In the lattice-based case, n4(A) is not just a dense and compact lattice

completion, it is an algebra in A.

e All operations in e,(A) =2 A and n4(A) are obtained simply by pointwise
lifting from those of M.

e The natural extension construction is functorial in a natural way.

e n,4(A) is a topological algebra—more on this shortly.



Structure of the natural extension C :=n4(A)
In the lattice-based case

e (' comes equipped with the subspace topology from the product it sits in.
But, better, the topology on C' = n4(A) is in fact its interval topology,
¢, having closed subbase the sets Tx and |x (z € C).

e (' is bi-algebraic (that is, algebraic and dually algebraic). Hence M*°(C) is
meet-dense on C' and J°°(C') is join-dense in C—as expected of a canonical

extension.

e (' is a Priestley space.



Contextualising, Il

Topological algebra meets domain theory:— Let C' be a bi-algebraic lattice.

Then TFAE

(1) C is a Priestley space wrt interval topology t¢;

(2) C is Hausdorff wrt v¢;

(3) Lawson, dual Lawson and interval topologies on C' are all equal (C' is
linked bi-algebraic);

Let C be a complete lattice. Then TFAE:

(a) C'is bi-algebraic and satisfies (1)—(3);

(b) C is a Boolean topological lattice wrt ¢c;

(c) C is a Boolean topological lattice wrt some topology.

An observation Convergence wrt Lawson topology is convergence wrt liminf

topology, and dually. This can be used to show that topological density on a
linked bi-algebraic lattice equals Aq-density.



What happened to f° and ™7

For a lattice-based algebra A, denote by L 4 the underlying lattice.

The traditional way to lift a basic operation f on A from L4 to LY is to

consider

o) = \{\{fla)|]ac Aand p<a<q}
pe€ K(C),qeO(C) and p <z < g},

(2) = A\ {f(@) [acAand p<a<q}
pe K(C),qe O(C) and p < z < q},

p € K(C) iff p is a meet of elements from A  (closed (filter) elements),
q € O(C) iff ¢ is a join of elements from A  (open (ideal) elements).



Our strategy:—

na(A) comes equipped with an interval-continuous extension fof f on A. We

can prove fcoincides with f? and with ™, so
e f is smooth;
e A is canonical using the standard extensions of operations; and

e f? = f™ is interval-continuous.

For this:

e We use ONLY interval-continuity of j/’\, simple properties of n4(A), of

canonical extensions and of f? and f™.

e We do NOT need the d-topology introduced by Gehrke/Jonsson

(distributive case) and extended to lattice case by Vosmaer.

e We do NOT need to establish directly that f (or f™) is

interval-continuous.



Structure of canonical extensions in the finitely generated case

Take C' = n4(A) as before. Let € y in C. Then there exist j € J>°(C) and a
finite set M; C M*°(C) such that

e j<zandjLy,

® C\T] = l./\/l]

and dually.

Contextualising, 11|

e The distributive case: | M| = 1. Completely join-irreducible elements =
completely join-prime elements and the canonical extension is completely

distributive and linked bi-algebraic.

e The non-finitely generated case: we still have a set M of elements of
M (C') such that C\Tj = | M, but M, is not generally finite. Canonical
extension need not be bi-algebraic (meet-continuity can fail—example due
to Mai Gehrke).



Contextualising, 1V

Profinite completions

Lat A = ISP(M) where now M is any set of finite algebras (of same type) —an
nternally residually finite prevariety.

_onsider the family of congruences
Sa:={aecCon(A)| A/a € A and A/« is finite }.
['hen & 4 is directed wrt O. Define

pro 4 (A) := {c e IT A/e ‘ (Yo, B €84) aC 8 = waglc(@)) = c(B) }

aES A

[hen A embeds in pro 4(A) via pa, where pa(a)(a) :=a/a (a € A, o € S4).



Profinite completion: reconciliations

canonical
extension
A finitely generated \
lattice-based variety profinite natural
completion extension
profinite . nhatural
Any IRF prevariety completion extension



Back to duality theory

For distributive lattices we can use Priestley duality to access the canonical

extension as a lattice of order-preserving maps into 2 = ({0, 1}; <).

For simplicity, take A = ISP(M) where M is a finite lattice-based algebra. An
algebraic relation is a subalgebra of some M™.

Theorem: Let A€ A and let b: A(A, M) — M. Then TFAE:
(1) b belongs to ng(A);
(2) b preserves every algebraic relation on M.

If, further, R is a set of algebraic relations yielding a duality on A (in sense of

natural duality theory), then (2) is equivalent to

(3) b preserves every relation in R.

For A = D, we take M = 2 and R = {<} (a subalgebra of 27).



For residuated lattices enthusiasts

Now let M be a finite set of finite algebras, J the discrete topology. Let
Mo := (M | M € M};Iso(M), T),

where Iso(M) = inverse semigroup (under composition of partial maps) of
isomorphisms between subalgebras of algebras in M.

Theorem (finitely generated discriminator varieties):  Let V = HSP(M) with
M as above. Then TFAE:

(1) V is quasiprimal (congruence permutable and congruence distributive and
every nontrivial subalgebra of each M € M is simple);

(2) 3 a term yielding the ternary discriminator on each algebra in M;

(3) My, yields a multisorted duality on V.



Canonical extensions which are full direct products

Theorem:  Let A = ISP(M), where M is a finite set of finite algebras, let
A € A and let B be the algebra of all M-sorted maps

b: [ J{AMAM) [ MeM} — | {M|MeM}

that preserve Iso(M). Then B is isomorphic to a full direct product of algebras
from S(M).

Corollary:  The natural extensionof an algebra in a finitely generated
lattice-based discriminator variety is isomorphic to a direct product of

quasiprimal algebras.



And finally:

‘A cardinal principle of modern mathematical

research may be stated as a maxim:

“One must always topologize.”

Marshall Stone (1938)



