
Canonical Extensions of Lattice Extensions:

The Case of Finitely Generated Varieties

Hilary Priestley

Mathematical Institute, University of Oxford

http://www.maths.ox.ac.uk/~hap

Joint work with Brian Davey,

and in part with Maria Gouveia, Miroslav Haviar,

and with acknowledgements too to Mai Gehrke

September 2010

1



The setting:
A = HSP(K)

where K is a FINITE lattice-based algebra (ie a lattice with, perhaps, additional
operations).

What can we say about canonical extensions in this case?

Method 1 [Gehrke/Vosmaer]:

Specialize the general theory.

Technique: standard canonical extension methodology.

Method 2 [Davey/Priestley]:

Build in finite generation from the start.

Technique: topological algebra.

ALSO:

Method 3 [Harding, Gouveia, Vosmaer]: profinite completions
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Topology

Now you see it . . .

Now you don’t.
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Topology

Now you see it . . .

Now you don’t.

BUT IT’S THERE!

1



Exploiting finite generation: a black box

A = HSP(K) (K finite lattice-based)

Jónsson’s Lemma

+

Birkhoff’s Subdirect Product Theorem

↓

↓
A = ISP(M) where M = {M1, . . . ,Mk} is a FINITE set of FINITE

lattice-based algebras.

We relate canonical extensions directly to M.
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Outline

A = ISP(M)

where M = {M1, . . . ,Mk} is a FINITE set of FINITE lattice-based algebras.

• We introduce the natural extension nA(A) of A ∈ A: it is a subalgebra of
powers of members of M.

• Reconciliation: at the lattice level, nA(A) is a dense and compact
completions of A, so a canonical extension.

• As a topological algebra, nA(A) is VERY NICE INDEED.

• Reconciliation: the operations of nA(A) coincide with the σ- and
π-extensions of those on A.

• Reconciliation: with duality approach.
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At the lattice level

The canonical extension of a lattice L is a dense and compact completion
C = Lδ of L: (Formally it is a pair (e, C) where e : L ↪→ C, but we normally
identify L with e(L).)

Density: L is ∆1-dense (that is,
∨ ∧

- and
∧ ∨

-dense) in C;

Compactness: for every filter F and every ideal I of L,
∧

F !
∨

I =⇒ F ∩ I $= ∅.

[equivalent conditions exist]
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Classic examples, via duality

• Boolean algebras:

L ∼= clopen subsets of Boolean space X (topologised ultrafilters)

↪→ Lδ = ℘(X) (complete atomic BA)

B. Jónsson (1993 survey on BAOs)

‘This [density + compactness] is an algebraic way of describing the
extension which arises from Stone’s Duality Theorem.’

• Bounded distributive lattices:

L ∼= clopen up-sets of Priestley space X (topologised prime filters, with ⊆)

↪→ Lδ = Up(X) (complete dl satisfying . . . )

BUT this won’t work for the variety of (bounded) lattices.
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Canonical extensions do exist for bounded lattices

Method 1 [Gehrke/Harding 2001]: as Galois-closed sets for the Galois
connection coming from a polarity.

Method 2 [Gehrke/Priestley 2008]: by combining free join- and
meet-completions and then taking MacNeille completion.

Uniqueness: Any concretely constructed dense and compact completion serves
as the canonical extension.
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Finitely generated varieties of lattice-based algebras

A few examples:

• De Morgan algebras

• Any variety of MV-algebras generated by a finite chain

• Any variety generated by a finite subdirectly irreducible Heyting algebra,
L⊕ 1, where L is a finite lattice.

In particular; HSP(4) = ISP({4,3})

• . . .
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The natural extension

Topological conventions

Any finite algebra, when topologised, carries the discrete topology.
Any product of finite algebras then carries the product topology.

Given: a quasivariety A = ISP({M1, . . . ,Mk}).
Here the Mi are finite, but need not be lattice-based for now.

Let A ∈ A. Define

Zi := A(A, Mi) (homomorphisms from A into Mi)

Then Zi is a closed subspace of MA
i , hence compact.

We can embed A homomorphically into MZ1
1 × · · ·×MZk

k by multisorted

evaluation:

eA: A→
∏

1!i!k

MZi
i where eA(a)(i)(x) = x(a),

for i ∈ {1, . . . , k} and x ∈ Zi = A(A, Mi).

(In fact eA(A) ⊆
∏

1!i!k C(Zi, Mi).)
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A key definition:

The natural extension of A is

nA(A) := eA(A) in
∏

MA(A,Mi)
i ,

where eA(A) denotes the topological closure. SO eA embeds A as a
topologically dense subalgebra of its natural extension.

Theorem: Let A = ISP(M) where M is a finite set of finite lattice-based
algebras. A ∈ A. Then, at the lattice level, nA(A) is a dense and compact
completion, and so a canonical extension.
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Contextualising, I

A wealth of dense and compact completions

Let {Ns}s∈S be a non-empty family of finite lattices.

Closed and complete sublattices

Let C be a sublattice of
∏

s∈S Ns. Then C is topologically closed iff C is a
complete sublattice (≡ closed under arbitrary non-empty joins and meets).

Dense completions

Let L be a sublattice of
∏

s∈S Ns. Then L is a ∆1-completion of L.

Compact completions

Let Z1, . . . , Zk be compact spaces, let M1, . . . ,Mk be finite lattices. Let L be a
sublattice of C(Z1, M1)× · · ·×C(Zk, Mk). Then L (taken in MZ1

1 × · · ·×MZk
k )

is a compact completion of L.
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More about the natural extension

[illustration for special case ISP(M)]

Extending the operations Let f be a basic operation (unary for simplicity).
Then f lifts pointwise from M to f̂ on nA(A) so as to extend its action on
A ∼= eA(A):

(f̂(ϕ))(x) := ϕ(f ◦ x) for x ∈ A(A, M) and ϕ ∈ nA(A) ⊆ MA(A,M)

Functoriality: follow your nose!

We get a functor from A to AT := IScP(M), the class of isomorphic copies of
topologically closed substructures of powers of M (empty structure included).

For u ∈ A(A, B), define nA(u) : nA(A) → nA(B) by

nA(u) := û!nA(A) where (û(ϕ))(y) := ϕ(y ◦ u),

for ϕ ∈ MA(A, M) and y ∈ A(B, M).
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Summarising

Propaganda for the natural extension:

• In the lattice-based case, nA(A) is not just a dense and compact lattice
completion, it is an algebra in A.

• All operations in eA(A) ∼= A and nA(A) are obtained simply by pointwise
lifting from those of M.

• The natural extension construction is functorial in a natural way.

• nA(A) is a topological algebra—more on this shortly.
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Structure of the natural extension C := nA(A)

In the lattice-based case

• C comes equipped with the subspace topology from the product it sits in.
But, better, the topology on C = nA(A) is in fact its interval topology,
ιC , having closed subbase the sets ↑x and ↓x (x ∈ C).

• C is bi-algebraic (that is, algebraic and dually algebraic). Hence M∞(C) is
meet-dense on C and J∞(C) is join-dense in C—as expected of a canonical
extension.

• C is a Priestley space.
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Contextualising, II

Topological algebra meets domain theory:— Let C be a bi-algebraic lattice.

Then TFAE

(1) C is a Priestley space wrt interval topology ιC ;

(2) C is Hausdorff wrt ιC ;

(3) Lawson, dual Lawson and interval topologies on C are all equal (C is
linked bi-algebraic);

Let C be a complete lattice. Then TFAE:

(a) C is bi-algebraic and satisfies (1)–(3);

(b) C is a Boolean topological lattice wrt ιC ;

(c) C is a Boolean topological lattice wrt some topology.

An observation Convergence wrt Lawson topology is convergence wrt liminf
topology, and dually. This can be used to show that topological density on a
linked bi-algebraic lattice equals ∆1-density.
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What happened to fσ and fπ?

For a lattice-based algebra A, denote by LA the underlying lattice.

The traditional way to lift a basic operation f on A from LA to Lδ
A is to

consider

fσ(x) :=
∨{∧

{ f(a) | a ∈ A and p ! a ! q } |

p ∈ K(C), q ∈ O(C) and p ! x ! q
}
,

fπ(x) :=
∧{∨

{ f(a) | a ∈ A and p ! a ! q } |

p ∈ K(C), q ∈ O(C) and p ! x ! q
}
,

p ∈ K(C) iff p is a meet of elements from A (closed (filter) elements),

q ∈ O(C) iff q is a join of elements from A (open (ideal) elements).
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Our strategy:—

nA(A) comes equipped with an interval-continuous extension f̂ of f on A. We
can prove f̂ coincides with fσ and with fπ, so

• f is smooth;

• A is canonical using the standard extensions of operations; and

• fσ = fπ is interval-continuous.

For this:

• We use ONLY interval-continuity of f̂ , simple properties of nA(A), of
canonical extensions and of fσ and fπ.

• We do NOT need the δ-topology introduced by Gehrke/Jónsson
(distributive case) and extended to lattice case by Vosmaer.

• We do NOT need to establish directly that fσ (or fπ) is
interval-continuous.
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Structure of canonical extensions in the finitely generated case

Take C = nA(A) as before. Let x ! y in C. Then there exist j ∈ J∞(C) and a
finite set Mj ⊆ M∞(C) such that

• j ! x and j ! y,

• C\↑j = ↓Mj .

and dually.

Contextualising, III

• The distributive case: |Mj | = 1. Completely join-irreducible elements =
completely join-prime elements and the canonical extension is completely
distributive and linked bi-algebraic.

• The non-finitely generated case: we still have a set Mj of elements of
M∞(C) such that C\↑j = ↓Mj but Mj is not generally finite. Canonical
extension need not be bi-algebraic (meet-continuity can fail—example due
to Mai Gehrke).
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Contextualising, IV

Profinite completions

Lat A = ISP(M) where now M is any set of finite algebras (of same type) —an
internally residually finite prevariety.

Consider the family of congruences

SA := {α ∈ Con(A) | A/α ∈ A and A/α is finite }.

Then SA is directed wrt ⊇. Define

proA(A) :=
{

c ∈
∏

α∈SA

A/α
∣∣∣ (∀α,β ∈ SA) α ⊆ β =⇒ ϕαβ(c(α)) = c(β)

}
.

Then A embeds in proA(A) via µA, where µA(a)(α) := a/α (a ∈ A, α ∈ SA).
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Profinite completion: reconciliations

canonical
extension

profinite
completion

natural
extension
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A finitely generated
lattice-based variety

profinite
completion

natural
extension

'(
Any IRF prevariety
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Back to duality theory

For distributive lattices we can use Priestley duality to access the canonical
extension as a lattice of order-preserving maps into 2 = ({0, 1};!).

For simplicity, take A = ISP(M) where M is a finite lattice-based algebra. An
algebraic relation is a subalgebra of some Mn.

Theorem: Let A ∈ A and let b : A(A, M)→M . Then TFAE:

(1) b belongs to nA(A);

(2) b preserves every algebraic relation on M .

If, further, R is a set of algebraic relations yielding a duality on A (in sense of

natural duality theory), then (2) is equivalent to

(3) b preserves every relation in R.

For A = D, we take M = 2 and R = {!} (a subalgebra of 22).

!
"

"
"
!

!
!

!

"
"

"
"
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For residuated lattices enthusiasts

Now let M be a finite set of finite algebras, T the discrete topology. Let

M∼ Iso :=
〈 ·⋃{M | M ∈ M }; Iso(M),T

〉
,

where Iso(M) = inverse semigroup (under composition of partial maps) of
isomorphisms between subalgebras of algebras in M.

Theorem (finitely generated discriminator varieties): Let V = HSP(M) with

M as above. Then TFAE:

(1) V is quasiprimal (congruence permutable and congruence distributive and

every nontrivial subalgebra of each M ∈ M is simple);

(2) ∃ a term yielding the ternary discriminator on each algebra in M;

(3) M∼ Iso yields a multisorted duality on V.
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Canonical extensions which are full direct products

Theorem: Let A = ISP(M), where M is a finite set of finite algebras, let

A ∈ A and let B be the algebra of all M-sorted maps

b : ·⋃{A(A, M) | M ∈M }→ ·⋃{M | M ∈M }

that preserve Iso(M). Then B is isomorphic to a full direct product of algebras

from S(M).

Corollary: The natural extensionof an algebra in a finitely generated
lattice-based discriminator variety is isomorphic to a direct product of
quasiprimal algebras.
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And finally:

‘A cardinal principle of modern mathematical
research may be stated as a maxim:

“One must always topologize.” ’

Marshall Stone (1938)
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