Generalizations of Relation Algebras from the perspective of (semi)lattices with operators

Peter Jipsen

Chapman University, Orange, California

A selection of joint work with Nick Galatos, University of Denver Andrew Moshier, Chapman University Georg Struth, University of Sheffield

September 22, 2010

Outline

- Relation algebras
- Residuated Boolean monoids
- Sequential algebras
- Unisorted Allegories
- (Anti)domain range monoids and semirings
- Residuated Lattices and expansions with a negation
- Quasi relation algebras
- Decidability of equational theory
- Conclusion and open problems

Relation algebras

Definition (Tarski 1941)

Relation algebras are algebras $\left(A, \wedge, \vee,^{\prime}, \perp, \top, \cdot, \smile, 1\right)$ such that

- $\left(A, \wedge, \vee^{\prime}, \perp, \top\right)$ is a Boolean algebra
- $(A, \cdot, 1)$ is a monoid and
- for all $x, y, z \in A, \quad(x \vee y) z=x z \vee y z \quad(x \vee y)^{\smile}=x^{\smile} \vee y^{\smile}$

$$
x^{\smile}=x \quad(x y)^{\smile}=y^{\smile} x^{\smile} \quad x^{\smile}(x y)^{\prime} \leq y^{\prime}
$$

The axioms were intended to capture the equational theory of algebras of binary relations: For a set U
$\operatorname{Re}(U)=\left(\mathcal{P}\left(U^{2}\right), \cap, \cup,^{\prime}, \emptyset, U^{2}, \circ, \smile, i d_{U}\right)$ is the full relation algebra on U

- is composition, $\quad R^{\smile}=\{(u, v):(v, u) \in R\}, \quad i d_{U}=\{(u, u): u \in U\}$
E.g. $(u, v) \in x^{\smile}(x y)^{\prime} \Rightarrow \exists w(w, u) \in x,(w, v) \notin x \circ y \Rightarrow(u, v) \notin y$

Properties of relation algebras

The variety RRA of representable relation algebras is generated by the class of all full relation algebras

Monk [1964] proved that RRA is a nonfinitely axiomatizable subvariety of the variety RA of all relation algebras

Hirsch and Hodkinson [1997] proved that it is undecidable whether a finite relation algebra is in RRA

Relation algebras are Boolean algebras with operators (,${ }^{\smile}$ distr. over \vee) Relation algebras can model relational semantics of computer programs But both the varieties RA and RRA have undecidable equational theories Can this be fixed by weakening the axioms, keeping associativity?

Conjugates and residuals

The five identities are equivalent to

$$
x y \leq z^{\prime} \quad \Longleftrightarrow \quad x^{\smile} z \leq y^{\prime} \quad \Longleftrightarrow \quad z y^{\smile} \leq x^{\prime}
$$

Proof.

From $x^{\smile}(x y)^{\prime} \leq y^{\prime}$ we get $x y \leq z^{\prime} \Rightarrow x^{\smile} z \leq x^{\smile}(x y)^{\prime} \leq y^{\prime}$ and from $x^{\smile}(x y)^{\prime} \leq y^{\prime}$ we get $y \leq\left(x^{\smile} z\right)^{\prime} \Rightarrow x y \leq x^{\smile \smile}\left(x^{\smile} z\right)^{\prime} \leq z^{\prime}$

Conversely from the \Longleftrightarrow we get $x y \leq(x y)^{\prime \prime} \Rightarrow x^{\smile}(x y)^{\prime} \leq y^{\prime}$

So defining conjugates $x \triangleright z=x^{\smile} z$ and $z \triangleleft y=z y^{\smile}$ we have

$$
x y \leq z^{\prime} \quad \Longleftrightarrow \quad x \triangleright z \leq y^{\prime} \quad \Longleftrightarrow \quad z \triangleleft y \leq x^{\prime}
$$

or replacing z by z^{\prime} and defining residuals $x \backslash z=\left(x \triangleright z^{\prime}\right)^{\prime}$ and $z / y=\left(z^{\prime} \triangleleft y\right)^{\prime}$ we get the equivalent residuation property

$$
x y \leq z \quad \Longleftrightarrow \quad y \leq x \backslash z \quad \Longleftrightarrow \quad x \leq z / y
$$

Residuated Boolean monoids

Definition (Birkhoff 1948, Jónsson 1991)

Residuated Boolean monoids are algebras $\left(A, \wedge, \vee,^{\prime}, \perp, \top, \cdot, \triangleright, \triangleleft, 1\right)$ s. t.

- $\left(A, \wedge, \vee,^{\prime}, \perp, \top\right)$ is a Boolean algebra
- $(A, \cdot, 1)$ is a monoid and
- for all $x, y, z \in A, \quad x y \leq z^{\prime} \Longleftrightarrow x \triangleright z \leq y^{\prime} \Longleftrightarrow z \triangleleft y \leq x^{\prime}$

Examples: For any monoid $\mathbf{M}=(M, *, e)$ the powerset monoid $\mathcal{P}(\mathbf{M})=\left(\mathcal{P}(M), \cap, \cup,^{\prime}, \emptyset, M, \cdot, \triangleright, \triangleleft,\{e\}\right)$ is a residuated Boolean monoid where $X Y=\{x * y: x \in X, y \in Y\}$, $X \triangleright Y=\{z: x * z=y$ for some $x \in X, y \in Y\}$, $X \triangleleft Y=\{z: z * y=x$ for some $x \in X, y \in Y\}$

If $\mathbf{G}=\left(G,,^{-1}\right)$ is a group, $\mathcal{P}(\mathbf{G})$ is a relation algebra, $X^{\smile}=\left\{x^{-1}: x \in X\right\}$
$\mathbf{R M}=$ the variety of residuated Boolean monoids
$\mathbf{R A}=$ the variety of relation algebras

Theorem (Jónsson and Tsinakis 1993)

$\mathbf{R A}$ is termequivalent to the subvariety of $\mathbf{R M}$ defined by $(x \triangleright y) z=x \triangleright(y z)$ The termequivalence is given by $x \triangleright y=x \smile y, x \triangleleft y=x y^{\smile}$ and $x^{\smile}=x \triangleright 1$

Aim to lift this result to residuated lattices and FL-algebras
RA and RM have undecidable equational theories
Want to find a larger variety "close to" RA that has a decidable equational theory, but ...

Kurucz, Nemeti, Sain and Simon [1993] proved that the variety of all Boolean algebras with an associative operator, as well as a "large number" of expanded subvarieties have undecidable equational theories

Positive Relation Algebras

Basically the theory of relation algebras without complementation
Subalgebras of complementation-free reducts of relation algebras
Subreducts of a variety are always a quasivariety (closed under S, P, P_{U})
Is pRA a variety? (i.e. closed under H ?)
Is pRA finitely based? (i.e. has fin. many equational or q-equat. axioms)
Does pRA have a decidable equational theory or universal theory?
[Andreka 1990] Representable pRAs have a decidable theory
Residuals are not definable in pRA
Lattice reducts are distributive; $\quad x y=x \wedge y$ for $x, y \leq 1$

Sequential algebras

Definition (Hoare and Von Karger 1994)

A sequential algebra is a residuated Boolean monoid that is

- balanced: $x \triangleright 1=1 \triangleleft x$ and
- euclidean: $x(y \triangleright z) \leq(x y) \triangleright z$

Ex: Any relation algebra A relativized with a reflexive transitive element For $t \in A$ with $1 \leq t=t^{2}$ define $\left.\mathbf{A}\right|_{t}=\left(\downarrow t, \wedge, \vee,^{\prime} t, \perp, t, \cdot, \triangleright, \triangleleft, 1\right)$ where $x^{\prime t}=x^{\prime} \wedge t, \quad x \triangleright y=\left(x^{\smile} y\right) \wedge t \quad$ and $\quad x \triangleleft y=\left(x y^{\smile}\right) \wedge t$ Problem: Does every sequential algebra arise in this way? True for RSeA [KNSS 1993] The equational theory of sequential algebras is undecidable [J. and Maddux 1997] Representable sequential algebras are not finitely axiomatizable

Unisorted allegories

Definition (Freyd and Scedrov 1990, Gutierrez 1998)

Unisorted allegories are algebras of the form $(A, \wedge, \cdot, \smile, 1)$ such that

- (A, \wedge) is a semilattice
- $(A, \cdot, 1)$ is a monoid
- $x^{\smile}=x, \quad(x y)^{\smile}=y^{\smile} x^{\smile}, \quad(x \wedge y)^{\smile}=y^{\smile} \wedge x^{\smile}$, $x(y \wedge z) \wedge x y=x(y \wedge z) \quad$ and $\quad\left(x \wedge\left(z y^{\smile}\right)\right) y \wedge z=x y \wedge z$

They are generalizations of relation algebras without $\vee,{ }^{\prime}, \perp, \top$
Is the equational theory of allegories decidable?
Consider the graphical calculi of Andreka and Bredekhin 1995, Curtis and Lowe 1995, de Freitas and Viana 2010

(Anti)domain-range monoids

Definition (J. and Struth 2009)

A domain-range monoid is an algebra $(A, \cdot, 1, d, r)$ such that $(A, \cdot, 1)$ is a monoid and
(D1) $\quad d(x) x=x$
(D2) $\quad d(x y)=d(x d(y))$
(R1) $\quad x r(x)=x$
(D3) $\quad d(d(x) y)=d(x) d(y)$
(D4) $\quad d(x) d(y)=d(y) d(x)$
(D5) $\quad d(r(x))=r(x)$
(R2) $\quad r(x y)=r(r(x) y)$
(R3) $\quad r(x r(y))=r(x) r(y)$
(R4) $\quad r(x) r(y)=r(y) r(x)$
(R5) $\quad r(d(x))=d(x)$

A domain monoid $(A, \cdot, 1, d)$ is a monoid that satisfies (D1)-(D4)
An antidomain monoid $(A, \cdot, 1, a)$ is a monoid that satisfies

$$
\begin{array}{lll}
a(x) x=a(1) & x a(1)=a(1) & a(x) a(y)=a(y) a(x) \\
a(a(x)) x=x & a(x)=a(x y) a(x a(y)) & a(x y) x=a(x y) x a(y)
\end{array}
$$

Defining $d(x)=a(a(x))$ in an antidomain monoid gives a domain monoid

(Anti)domain-range semirings

Definition (Desharnais, Möller and Struth, 2003)

A domain-range semiring is an algebra $(A, \cdot, 1,+, 0, d, r)$ such that

- $(A, \cdot, 1, d, r)$ is a domain-range monoid
- $(A,+, 0)$ is a semilattice with bottom
- \cdot, d, r distribute over +
- $x 0=0 x=0 \quad d(0)=0 \quad r(0)=0 \quad d(x)+1=1$

An antidomain semiring $(A, \cdot, 1,+, 0, a)$ is an antidomain monoid such that $(A,+, 0)$ is a semilattice with bottom, \cdot distributes over + ,
$a(x+y)=a(x) a(y), x 0=0 x=0, a(1)=0$ and $a(x)+1=1$

RAs have antidomain-range semiring reducts with $d(x)=x x^{\smile} \wedge 1$ etc
[J., Struth] The equational theory of domain-range semirings is decidable
[Hirsch Mikulas 2010] The class of representable (anti)domain(-range) monoids is not finitely axiomatizable

Residuated lattices and FL-algebras

Definition (Ward and Dilworth 1939, Ono 1990)

A Residuated lattices is of the form $(A, \wedge, \vee, \cdot, \backslash, /, 1)$ where

- (A, \wedge, \vee) is a lattice
- $(A, \cdot, 1)$ is a monoid
- the residuation property holds, i. e., for all $x, y, z \in A$

$$
x \cdot y \leq z \quad \Longleftrightarrow \quad x \leq z / y \quad \Longleftrightarrow \quad y \leq x \backslash z
$$

A Full Lambek (or FL-)algebra $(A, \wedge, \vee, \cdot, \backslash, /, 1,0)$ is a residuated lattice expanded with a constant 0 (no properties assumed about it)

Examples: BAs, Heyting algebras, MV-algebras, BL-algebras, intuitionistic linear logic algebras, ... are FL-algebras

Generalized BAs, Brouwerian algebras, Wajsberg hoops, basic hoops, I-groups, GMV-algebras, GBL-algebras, ... are residuated lattices

Relational semantics for lattices with operators

Atom structures for $\mathrm{BAOs}=$ Kripke frames $=\left(W, R_{i}(i \in I)\right)$
For lattices with operators $=$ Galois frames $=\left(W, W^{\prime}, N, R_{i}, \epsilon_{i}(i \in I)\right)$
E.g. for residuated lattices: $\mathbf{W}=\left(W, W^{\prime}, N, \circ, \|, / /, E\right)$ such that

- N is a binary relation from W to W^{\prime}, called the Galois relation,
- $X^{\triangleright}=\left\{y \in W^{\prime}: X N y\right\} \quad Y^{\triangleleft}=\{x \in W: x N Y\} \quad \gamma_{N}(X)=X^{\triangleright \triangleleft}$
- $\circ \subseteq W^{3}, \quad \| \subseteq W \times W^{\prime} \times W^{\prime}, \quad / / \subseteq W^{\prime} \times W \times W^{\prime}$
- $x \circ y=\{z:(x, y, z) \in \circ\}$ and similarly for $\mathbb{V}, / /$
- (u○v) $N w$ iff $v N(u \backslash w)$ iff $u N(w / / v)$ all $u, v \in W, w \in W^{\prime}$
- $E \subseteq W$ such that $(x \circ E)^{\triangleright}=\{x\}^{\triangleright}=(E \circ x)^{\triangleright}$, for all $x \in W$
- $[(x \circ y) \circ z]^{\triangleright}=[x \circ(y \circ z)]^{\triangleright}$ for all $x, y, z \in W$

Then $\mathbf{W}^{+}=\left(\gamma_{N}[\mathcal{P}(W)], \cap, \vee, \circ, \backslash \backslash, / /, E\right)$ is a residuated lattice

Conversely, from a residuated lattice we get a Galois frame by taking
$W=$ filters, $W^{\prime}=$ ideals, $N=\{(F, I): F \cap I \neq \emptyset\}$
$(F, G, H) \in \circ$ iff $F \cdot G \subseteq H, \quad(F, I, J) \in \backslash$ iff $F \backslash I \subseteq J, \quad E=\downarrow 1$
\mathbf{W}^{+}gives the canonical extension of the residuated lattice
For semilattices only need filters (or ideals)
Galois frames can be built from a Gentzen system \mathbf{G} (sequent calculus)
$W=T(\operatorname{Var})^{*}=$ sequences of terms over $\wedge, \vee, \cdot, \backslash, /, 1, \operatorname{Var}$
$W^{\prime}=T($ Var $) \times W^{2}$
$N=\{(w,(t, u, v)): \mathbf{G} \vdash u w v \leq t\}, \quad \circ=$ concatenation, $\quad E=\{()\}$
$z w N(t, u, v)$ iff $\mathbf{G} \vdash u z w v \leq t$ iff $w N(t, u z, v)$, so $z \backslash(t, u, v)=\{(t, u z, v)\}$

Consequences of this construction

[J. and Tsinakis 2002] Algebraic proof of eq. decidability for RL, FL [Blok and van Alten 2003] Finite embeddability property for integral RL [Belardinelli, J. and Ono 2004] Finite model property for $\mathrm{FL}_{\text {ew }}$ [Wille 2005] Algebraic proof of equational decidability of cyclic InFL [J. and Galatos 2010] Algebraic proofs of cut-elimination, FMP and eq. decidability for RL, FL and "structural subvarieties", InFL , distributive FL The construction can be adapted to many subvarieties of residuated lattices and other lattice ordered algebras, gives FEP in integral case

Whenever the Gentzen system gives a decision procedure then \mathbf{W}^{+} contains the Var-generated free algebra of the variety
[J. and Moshier] Adding topology to Galois frames gives a duality for LOs

Returning to FL-algebras and relation algebras

- Complementation free reducts of residuated Boolean monoids
- Symmetric relation algebras are a subvariety of RA defined by $x^{\smile}=x$ If we let $0=1^{\prime}, x \backslash y=\left(x y^{\prime}\right)^{\prime}$ and $x / y=\left(x^{\prime} y\right)^{\prime}$ then symmetric RAs are FL-algebras

In this case $x^{\prime}=x \backslash 0=0 / x$
But for relation algebras in general $x \backslash 0=\left(x^{\wedge} 1^{\prime \prime}\right)^{\prime}=x^{\wedge \prime}$ so complementation is not recovered by this term

In an FL-algebra there are two linear negations

$$
\sim x=x \backslash 0 \quad-x=0 / x
$$

but they need not coincide

Definition of FL'-algebras

To interpret relation algebras into FL-algebras we expand FL-algebras with a unary operation:

Definition

An $F L^{\prime}$-algebra is an expansion of an FL-algebra with a unary operation ' that satisfies $x^{\prime \prime}=x$. Also define the following terms:

- converses $x^{\smile}=(\sim x)^{\prime} \quad$ and $\quad x^{\sqcup}=(-x)^{\prime}$,
- conjugates $x \triangleright y=\left(x \backslash y^{\prime}\right)^{\prime}$ and $y \triangleleft x=\left(y^{\prime} / x\right)^{\prime}$ and consider the identities
(In) $\sim-x=x=-\sim x \quad$ (involutive law)
(Cy) $\sim x=-x \quad$ (cyclic law)
(Dm) $(x \wedge y)^{\prime}=x^{\prime} \vee y^{\prime} \quad\left(\right.$ De Morgan, equivalent to $\left.(x \vee y)^{\prime}=x^{\prime} \wedge y^{\prime}\right)$

Properties of FL'-algebras

Proposition

In an $F L^{\prime}$-algebra the following properties hold:
(1) $(x y) \triangleright z=y \triangleright(x \triangleright z)$ and $\quad z \triangleleft(y x)=(z \triangleleft x) \triangleleft y$
(2) $(x y)^{\llcorner }=y \triangleright x^{\smile} \quad$ and $\quad(x y)^{\sqcup}=y^{\sqcup} \triangleleft x$
(3) $1 \triangleright x=x$ and $x \triangleleft 1=x$
(9) $\sim x=-x \quad$ iff $\quad x^{\smile}=x^{\sqcup} \quad$ (cyclic/balanced)

If $(\mathrm{Dm}):(x \wedge y)^{\prime}=x^{\prime} \vee y^{\prime} \quad$ is assumed then we also have

- $x y \leq z^{\prime} \quad \Leftrightarrow \quad x \triangleright z \leq y^{\prime} \quad \Leftrightarrow \quad z \triangleleft y \leq x^{\prime} \quad$ (conjugation)
- $(x \vee y)^{\llcorner }=x^{\smile} \vee y^{\smile} \quad$ and $\quad(x \vee y)^{\sqcup}=x^{\sqcup} \vee y^{\sqcup}$
- $(x \vee y) \triangleright z=(x \triangleright z) \vee(y \triangleright z) \quad$ and $\quad z \triangleleft(x \vee y)=(z \triangleleft x) \vee(z \triangleleft y)$
- $(x \vee y) \triangleleft z=(x \triangleleft z) \vee(y \triangleleft z) \quad$ and $\quad z \triangleright(x \vee y)=(z \triangleright x) \vee(z \triangleright y)$

RL'-algebras

FL-algebras are a subvariety of FL^{\prime}-algebras if we define $x^{\prime}=x$
Residuated lattices ($\mathbf{R L}$) are a subvariety of $\mathbf{F L}$ if we define $0=1$
$\mathbf{R L}^{\prime}$ is the subvariety of $\mathbf{F L}^{\prime}$ defined by $1^{\prime}=0$

Lemma

In an $R L^{\prime}$-algebra the following properties hold:

- $x \triangleright 1=x^{\smile} \quad$ and $\quad 1 \triangleleft x=x^{\sqcup}$
- $1^{\smile}=1^{\sqcup}=1$

Proof.

$x \triangleright 1=(x \backslash 0)^{\prime}=x^{\smile}$. Likewise, $1 \triangleleft x=x^{\sqcup}$
By previous Prop. $1 \triangleright x=x$, hence $1^{\smile}=1 \triangleright 1=1$

Some subvarieties of FL^{\prime}

How ' interacts with the linear negations

Recall the definitions $x^{\smile}=(\sim x)^{\prime}$ and $x^{\sqcup}=(-x)^{\prime}$

Proposition

In a DmFL'-algebra A (1a)-5(b) are equivalent:
(1a) $(\sim x)^{\prime}=-\left(x^{\prime}\right)$
(1b) $(-x)^{\prime}=\sim\left(x^{\prime}\right)$
(2a) $x^{\prime \prime}=x^{\prime \sqcup}$
(2b) $x^{\sqcup^{\prime}}=x^{\prime}$
(3a) $\sim x=x^{\prime \sqcup}$
(3b) $-x=x^{\prime}$
(4a) $x^{\sqcup \sqcup} \leq x \leq x^{\smile}$
(4b) $x^{\smile \hookrightarrow} \leq x \leq x^{\sqcup \sqcup}$
(5a) $\sim x^{\smile} \leq x^{\prime} \leq-x^{\sqcup}$
(5b) $-x^{\sqcup} \leq x^{\prime} \leq \sim x^{\smile}$
De Morgan involution De Morgan converses De Morgan converses converses involutive

Moreover, each of these properties implies
(In) $\sim-x=x=-\sim x$
(linear) involutive.

Proof.

To see that $(1 \mathrm{a}) \Leftrightarrow(1 \mathrm{~b})$, replace x by x^{\prime} in (1a) to get $-x=\left(\sim\left(x^{\prime}\right)\right)^{\prime}$ and apply ${ }^{\prime}$ to both sides. Since $x^{\prime \prime}=x$, this calculation is reversible.

Proof continued.

The equivalence of (1a), (2a), (3a), (1b), (2b) and (3b) follows directly from the definition of the converses
$(1 a) \Rightarrow(4 a)$: By definition of x^{\smile} we have
$x^{\smile}=\left[\sim\left((\sim x)^{\prime}\right)\right]^{\prime}=-\left((\sim x)^{\prime \prime}\right)=-\sim x \geq x$, where he second equality follows from (1a). By (Dm) we deduce $x^{\sim^{\prime}} \leq x^{\prime}$, hence $x^{\prime \sqcup \sqcup} \leq x^{\prime}$ by (2a). Replacing x by x^{\prime} we get $x^{\amalg \sqcup} \leq x$.
$(4 \mathrm{a}) \Rightarrow(1 \mathrm{a}): x^{\llcorner/} \leq x^{\llcorner/ \sim \hookrightarrow}=x^{\llcorner/ \sim / \prime}=(\sim-x)^{\prime \sim} \leq x^{\prime}$, where the last inequality follows from $x \leq \sim-x$ and the fact that ' is order reversing and ${ }^{\sqcup}$ is order preserving. For the reverse inclusion we use the assumption $x^{\sqcup \sqcup} \leq x$, which gives $x^{\prime \prime} \leq x^{\sqcup \sqcup / \sim}=\left(-\left(x^{\sqcup}\right)\right)^{\prime \prime \prime}=\left(\sim-\left(x^{\sqcup}\right)\right)^{\prime} \leq x^{\sqcup \prime}$.
The equivalence of (4a) and (5a) is a simple consequence of the definition of the converses and (Dm).
$(1 a) \Rightarrow(\ln)$: We always have $x \leq \sim-x$. Hence by (Dm), $(\sim-x)^{\prime} \leq x^{\prime}$, so by (1a) and its equivalent (1b) $-\sim\left(x^{\prime}\right) \leq x^{\prime}$, for all x. Consequently $-\sim x \leq x$, for all x. Since the reverse inequality always holds, this establishes half of (In); the other half follows by symmetry.

How ' interacts with multiplication

The prefix (Di), for De Morgan involution, is used for an algebras that satisfies (1a) or any of its other 9 equivalent forms.

A 4-element counterexample shows that (In) is not equivalent to (Di), even in the commutative case.

Define the term $x+y=\sim(-y \cdot-x) \quad(=-(\sim y \cdot \sim x)$ if (\ln) is assumed $)$

Proposition

In every InFL '-algebra the following are equivalent and they imply $0=1^{\prime}$
(1) $(x y)^{\smile}=y^{\smile} x^{\smile}$
(2) $(x y)^{\sqcup}=y^{\sqcup} x^{\sqcup}$
(3) $x \triangleright y=x^{\smile} y$
(4) $y \triangleleft x=y x^{\sqcup}$
(5) $(x y)^{\prime}=x^{\prime}+y^{\prime}$

The prefix (Dp) for De Morgan product is used for (5)

Quasi relation algebras

A quasi relation algebra $(q R A)$ is an FL^{\prime}-algebra that satisfies
(Dm): $(x \wedge y)^{\prime}=x^{\prime} \vee y^{\prime},(\mathrm{Di}):(\sim x)^{\prime}=-\left(x^{\prime}\right)$ and $(\mathrm{Dp}):(x y)^{\prime}=x^{\prime}+y^{\prime}$

Proposition

$\mathbf{R A}=\mathbf{q R A}+$ Boolean, i.e. it suffices to add distributivity: $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$ and complementation: $x \wedge x^{\prime}=\perp\left(=1 \wedge 1^{\prime}\right)$ and $x \vee x^{\prime}=\top\left(=1 \vee 1^{\prime}\right)$

Proof.

$x \wedge x^{\prime}=\perp$ implies $\sim\left(x \wedge x^{\prime}\right)=T$, hence $\sim x \vee \sim\left(x^{\prime}\right)=T$.
By distributivity and (Di) $(\sim x)^{\prime} \leq \sim\left(x^{\prime}\right)=(-x)^{\prime}$, so $x^{\smile} \leq x^{\sqcup}$.
The reverse is similar, and the remaining axioms of RA follow from their qRA versions.

qRAs from lattice ordered groups

Let $G=\operatorname{Aut}(C)$ be the ℓ-group of all order-automorphisms of a chain C, and assume that C has a dual automorphism ${ }^{\partial}: C \rightarrow C$
G is a involutive FL-algebra with $\sim x=-x=x^{-1}, x+y=x y$, and $0=1$
For $g \in G$, define $g^{\prime}(x)=g\left(x^{\partial}\right)^{\partial}$. Then $g^{\prime \prime}=g, \quad 1^{\prime}=1$
$y=g^{-1 \prime}(x) \quad \Leftrightarrow \quad y=g^{-1}\left(x^{\partial}\right)^{\partial} \quad \Leftrightarrow \quad y^{\partial}=g^{-1}\left(x^{\partial}\right)$
$g\left(y^{\partial}\right)^{\partial}=x \quad \Leftrightarrow \quad g^{\prime}(y)=x \quad \Leftrightarrow \quad y=g^{\prime-1}(x)$
$(g \vee h)^{\prime}(x)=\left(g\left(x^{\partial}\right) \vee h\left(x^{\partial}\right)\right)^{\partial}=g\left(x^{\partial}\right)^{\partial} \wedge h\left(x^{\partial}\right)^{\partial}=\left(g^{\prime} \wedge h^{\prime}\right)(x)$ and $(g h)^{\prime}(x)=\left(g\left(h\left(x^{\partial}\right)\right)\right)^{\partial}=g\left(h\left(x^{\partial}\right)^{\partial \partial}\right)^{\partial}=\left(g^{\prime} h^{\prime}\right)(x)=\left(g^{\prime}+h^{\prime}\right)(x)$.

Hence G expanded with ' is a quasi relation algebra.

Constructing qRAs from InFL-algebras

For InFL-algebra $(A, \wedge, \vee, \cdot, \sim,-, 1,0)$ define $\mathbf{A}^{\partial}=(A, \vee, \wedge,+,-, \sim, 0,1)$
\mathbf{A}^{∂} is also an InFL-algebra called the dual of \mathbf{A}
Define $F: \mathbf{I n F L} \rightarrow \mathbf{\operatorname { l n } F L ^ { \prime }}$ by $F(\mathbf{A})=\mathbf{A} \times \mathbf{A}^{\partial}$ expanded with $(a, b)^{\prime}=(b, a)$
For a homomorphism $h: \mathbf{A} \rightarrow \mathbf{B}$ define $F(h): F(\mathbf{A}) \rightarrow F(\mathbf{B})$ by $F(h)(a, b)=(h(a), h(b))$.

Theorem (generalization of Brzozowski 2001)
F is a functor from InFL to $q R A$.
If G is the reduct functor from $q R A$ to InFL then for any quasi relation algebra \mathbf{C}, the map $\sigma_{\mathbf{C}}: \mathbf{C} \rightarrow F G(\mathbf{C})$ given by $\sigma_{\mathbf{C}}(a)=\left(a, a^{\prime}\right)$ is an embedding.

Proving that $F(\mathbf{A})$ is a qRA

Proof.

Let \mathbf{A} be an InFL-algebra. Since \mathbf{A}^{∂} is also an InFl-algebra, it will follow that $F(\mathbf{A})$ is a qRA as soon as we observe that (Dm), (Dp) and (Di) hold. $(\mathrm{Dm}):((a, b) \wedge(c, d))^{\prime}=(a \wedge c, b \vee d)^{\prime}=(b \vee d, a \wedge c)=$ $(b, a) \vee(d, c)=(a, b)^{\prime} \vee(c, d)^{\prime}$.
(Dp): $((a, b) \cdot(c, d))^{\prime}=(a c, b+d)^{\prime}=(b+d, a c)=$ $(\sim(-d \cdot-b), \sim(-c+-a))=\sim((-d,-c) \cdot(-b,-a))=$ $\sim(-(d, c) \cdot-(b, a))=(b, a)+(d, c)=(a, b)^{\prime}+(c, d)^{\prime}$. (Di): $\sim(a, b)^{\prime}=\sim(b, a)=(\sim b,-a)=(-a, \sim b)^{\prime}=(-(a, b))^{\prime}$ and similarly $-(a, b)^{\prime}=(\sim(a, b))^{\prime}$.

Corollary

The equational theory of $\mathbf{q R A}$ is a conservative extension of that of $\mathbf{I n F L}$; i.e., every equation over the language of $\mathbf{I n F L}$ that holds in qRA, already holds in InFL.

Lifting the Jónsson-Tsinakis result to qRAs

Theorem

qRAs are term-equivalent to the subvariety of DiDmRL' defined by $(x \triangleright y) z=x \triangleright(y z)$
The term-equivalence is given by $x \triangleright y=x^{\smile} y, x \triangleleft y=x y^{\sqcup}$ and $x^{\smile}=x \triangleright 1, x^{\sqcup}=1 \triangleleft x$

Proof.

By (Dp) $x \triangleright y=x^{\smile} y$, hence $(x \triangleright y) z=x^{\smile} y z=x \triangleright(y z)$
Conversely, if $(x \triangleright y) z=x \triangleright(y z)$ holds then $x^{\smile} z=(x \triangleright 1) z=x \triangleright z$, hence (Dp) holds.

qRAs have a decidable equational theory

We make use of the following result:
Theorem (J. and Galatos)
The variety $\mathbf{I n F L}$ is generated by its finite members, hence has a decidable equational theory

For an InFL-term t, we define the dual term t^{∂} inductively by

$$
\begin{aligned}
x^{\partial} & =x & & (s \wedge t)^{\partial}=s^{\partial} \vee t^{\partial} \\
0^{\partial} & =1 & & (s \vee t)^{\partial}=s^{\partial} \wedge t^{\partial} \\
1^{\partial} & =0 & & (s \cdot t)^{\partial}=s^{\partial}+t^{\partial} \\
(\sim s)^{\partial} & =-s^{\partial} & & (s+t)^{\partial}=s^{\partial} \cdot t^{\partial} \\
(-s)^{\partial} & =\sim s^{\partial} & &
\end{aligned}
$$

We also define $(s=t)^{\partial}$ to be $s^{\partial}=t^{\partial}$.

Lemma

An equation ε is valid in lnFL iff ε^{∂} is also valid in lnFL.

We fix a partition of the denumerable set of variables into two denumerable sets X and X^{\bullet}, and fix a bijection $x \mapsto x^{\bullet}$ from the first set to the second (hence $x^{\bullet \bullet}$ denotes x).

For a qRA-term t, we define the term t° inductively by

$$
\begin{array}{cc}
x^{\circ}=x & \left(s^{\prime \prime}\right)^{\circ}=s \\
0^{\circ}=0, \quad 1^{\circ}=1, & \left((s \wedge t)^{\prime}\right)^{\circ}=s^{\prime \circ} \vee t^{\prime \circ}, \\
\left(0^{\prime}\right)^{\circ}=1, \quad\left(1^{\prime}\right)^{\circ}=0, & \left((s \vee t)^{\prime}\right)^{\circ}=s^{\prime \circ} \wedge t^{\prime \circ}, \\
(s \diamond t)^{\circ}=s^{\circ} \diamond t^{\circ}, \text { for all } \diamond \in\{\wedge, \vee, \cdot,+\}, & \left((s \cdot t)^{\prime}\right)^{\circ}=s^{\prime \circ}+t^{\prime \circ}, \\
(\sim s)^{\circ}=\sim s^{\circ}, \quad(-s)^{\circ}=-s^{\circ}, & \left((s+t)^{\prime}\right)^{\circ}=s^{\prime \circ} \cdot t^{\prime \circ}, \\
\left((\sim s)^{\prime}\right)^{\circ}=-\left(s^{\circ \circ}\right), \quad\left((-s)^{\prime}\right)^{\circ}=\sim\left(s^{\circ \circ}\right), & \left(x^{\prime}\right)^{\circ}=x^{\bullet}
\end{array}
$$

Lemma

For every qRA-term $t, t^{\circ \partial}\left(x_{1}, \ldots, x_{n}\right)=t^{\prime o}\left(x_{1}^{\bullet}, \ldots, x_{n}^{\bullet}\right)$.

For a substitution σ, we define a substitution σ° by $\sigma^{\circ}(x)=(\sigma(x))^{\circ}$, if $x \in X$, and $\sigma^{\circ}(x)=\left(\sigma(x)^{\prime}\right)^{\circ}$, if $x \in X^{\bullet}$.

Lemma

For every qRA-term t and $\mathbf{q R A}$-substitution $\sigma,(\sigma(t))^{\circ}=\sigma^{\circ}\left(t^{\circ}\right)$.
Theorem
An equation ε over X holds in $\mathbf{q R A}$ iff the equation ε^{0} holds in $\mathbf{I n F L}$.

Corollary

The equational theory of $\mathbf{q R A}$ is decidable.

qRA has the finite model property

Theorem

The variety qRA is generated by its finite members. Actually, the finite members of the form $F(\mathbf{A})$, for $\mathbf{A} \in \operatorname{InFL}$, generate the variety.

Proof.

Let $\varepsilon=(s=t)$ be an equation in the language of $\mathbf{q R A}$, over the variables x_{1}, \ldots, x_{n}, that fails in the variety.
Then the equation $s^{\circ}=t^{\circ}$ (over the variables $x_{1}, \ldots, x_{n}, x_{1}^{\bullet}, \ldots, x_{n}^{\bullet}$) fails in $\mathbf{I n F L}$
Since the variety lnFL is generated by its finite members, there is a finite
$\mathbf{A} \in \operatorname{InFL}$ and $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in A$, such that $\left(s^{\circ}\right)^{\mathbf{A}}(\bar{a}, \bar{b}) \neq\left(t^{\circ}\right)^{\mathbf{A}}(\bar{a}, \bar{b})$.
We can assume that negations in $s=t$ have been pushed down to the variables
Then s and s° are almost identical, except for occurrences of variables x^{\prime} and x^{\bullet}.

qRA has the finite model property

Proof continued.

Therefore, $s\left(x_{1}, \ldots, x_{n}\right)=s^{\circ}\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$, and the same for t. We have

$$
\begin{aligned}
& s^{F(\mathbf{A})}\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right)= \\
& \left(s^{\circ}\right)^{F(A)}\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right),\left(a_{1}, b_{1}\right)^{\prime}, \ldots,\left(a_{n}, b_{n}\right)^{\prime}\right)= \\
& \left(s^{\circ}\right)^{F(\mathbf{A})}\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right),\left(b_{1}, a_{1}\right), \ldots,\left(b_{n}, a_{n}\right)\right)= \\
& \left(\left(s^{\circ}\right)^{\boldsymbol{A}}(\bar{a}, \bar{b}),\left(s^{\circ}\right)^{A^{\circ}}(\bar{b}, \bar{a})\right) \neq \\
& \left(\left(t^{\circ}\right)^{A}(\bar{a}, \bar{b}),\left(t^{\circ}\right)^{\mathbf{A}^{\circ}}(\bar{b}, \bar{a})\right)= \\
& t^{F(\mathbf{A})}\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right) .
\end{aligned}
$$

In other words, the equation $s=t$ fails in $F(\mathbf{A})$, which is a finite qRA.

Conclusion

By expanding FL-algebras with a unary De Morgan operation one can interpret relation algebras with FL'-algebras

This leads to the variety of quasi relation algebras that has many properties in common with RA

In addition qRA has a decidable equational theory and the FMP
Problem: Do distributive qRAs have a decidable equational theory?
Problem: Are positive relation algebras finitely based or eq. decidable?
Problem: Is every sequential algebra a relativization of a relation algebra?

References

F. Belardinelli, P. Jipsen and H. Ono, Algebraic aspects of cut elimination, Studia Logica, 77, 2004, 209-240
W. J. Blok, C. J. van Alten, On the finite embeddability property for residuated ordered groupoids, Trans. Amer. Math. Soc., 357, 2005, 4141-4157
P. Jipsen and N. Galatos, Residuated frames with applications to decidability, accepted 2010
P. Jipsen and M. A. Moshier, Topological duality and lattice expansions, Part I \& II, preprints
P. Jipsen and C. Tsinakis, A survey of residuated lattices, Ordered Algebraic Structures, Kluwer, 2002, 19-56
B. Jónsson, A survey of Boolean algebras with operators, in "Algebras and Orders", ed. I.

Rosenberg, G. Sabidussi, Springer, 1993, 239-286
B. Jónsson and C. Tsinakis, Relation algebras as residuated Boolean algebras, Algebra Universalis 30 (1993), no. 4, 469-478

Á. Kurucz, I. Németi, I. Sain and A. Simon, Undecidable Varieties of Semilattice - ordered Semigroups, of Boolean Algebras with Operators, and logics extending Lambek Calculus, Logic Journal of IGPL, (1993) 1(1), 91-98
F. Gutierrez, The decidability of the theory of allegories, online at citeseer, 1998
A. Wille, A Gentzen system for involutive residuated lattices, Algebra Universalis 54 (2005), no. 4, 449-463

