Complete Representations for Distributive Lattices

Rob Egrot, with thanks to Robin Hirsch

January 13, 2011

L is a bounded, distributive lattice.

- A representation of L is an embedding h : L → 𝒫(X) for some set X, where 𝒫(X) is considered as a ring of sets.
- When such an h exists we say L is representable.

Representations 2: alternative view

Let $h: L \to \mathscr{P}(X)$ be a representation. Then for each $x \in X$:

- Define $h^{-1}[x] = \{a \in L : x \in h(a)\}.$
- $h^{-1}[x]$ is a prime filter of L.
- ▶ *h* is an embedding so if $a \neq b \in L$ there is some $x \in X$ with $x \in h(a) \triangle h(b)$.
- ▶ For this x either $a \in h^{-1}[x]$ and $b \notin h^{-1}[x]$ or vice versa.
- We say the set $\{h^{-1}[x] : x \in X\}$ is *distinguishing* over *L*.

Conversely, suppose set *P* of prime filters is distinguishing over *L*:

- Easy to show the map h:→ 𝒫(P), h: a ↦ {p ∈ P : a ∈ p} is an embedding.
- ▶ Therefore *L* is representable.

Representations 4

The previous two slides combine to:

Theorem

A distributive lattice is representable if and only if it has a distinguishing set of prime filters.

In view of the prime ideal theorem we have:

Theorem Every distributive lattice is representable.

These results were first proved by Birkhoff in [1]

Preservation of arbitrary meets and joins

- $f: L_1 \to L_2$ is meet-complete when $f(\bigwedge S) = \bigwedge f[S]$ whenever $\bigwedge S$ is defined in L_1 .
- *join-complete* defined similarly. When f is both meet and join complete we say it is *complete*.
- When L has a meet-complete representation we say it is meet-completely representable etc.

Duality for complete representations

Theorem

L has a meet-complete representation iff L^{δ} has a join-complete representation.

Proof.

If $h: L \to \mathscr{P}(P)$ is a representation, where P is some distinguishing set of prime filters of L, then the map $\bar{h}: L^{\delta} \to \mathscr{P}(P), a \mapsto -h(a)$ is also a representation. If h is meet-complete then by De Morgan $\bar{h}(\bigvee_{\delta}) = -h(\bigwedge S) = -\bigcap h[S] = -\bigcap -\bar{h}[S] = \bigcup \bar{h}[S].$

Preservation of arbitrary meets and joins 2

Theorem

Let L be a bounded, distributive lattice. Then:

- 1. L has a meet-complete representation iff L has a distinguishing set of complete, prime filters,
- 2. L has a join-complete representation iff L has a distinguishing set of completely-prime filters,
- 3. L has a complete representation iff L has a distinguishing set of complete, completely-prime filters,

This result was known at least as far back as 1948 [2].

Preservation of arbitrary meets and joins 3

Proof.

We prove 1), the rest follows from duality: If *h* is a representation of *L* we can assume wlog that $h: L \to \mathscr{P}(K)$ for some distinguishing set *K* of prime filters. It is always the case that $h(\Lambda S) \subseteq \bigcap h[S]$. Now, $p \in \bigcap h[S] \iff \forall s \in S(p \in h(s)) \iff \forall s \in S(s \in p)$, so $\bigcap h[S] \subseteq h(\Lambda S)$ if and only if

$$orall p \in \mathcal{K}ig(orall s \in S(s \in p) o ig S \in pig)$$

and the demand that this hold for every $S \subseteq L$ such that $\bigwedge S$ exists in L is precisely the demand that every prime filter in K is complete.

Boolean algebras

Lemma

If L is complemented then its prime filters are precisely its ultrafilters, moreover the following are equivalent:

- 1. P is a principal ultrafilter of L,
- 2. P is a complete ultrafilter of L,
- 3. P is a completely-prime ultrafilter of L.

Proof.

Easy to see ultrafilters of a BA are precisely its prime filters. Clearly 1) \implies 2). Let *U* be an ultrafilter. If *U* is complete it must contain a non-zero lower bound and thus is principle so 2) \implies 1). De Morgan gives $-\bigvee S = \bigwedge -S$ so if *U* is complete then $S \cap U = \emptyset \implies \bigwedge -S \in U \implies -\bigvee S \in U \implies \bigvee S \notin U$, so 2) \implies 3). Similarly, if *U* is completely-prime then $\bigwedge S \notin U \implies -\bigwedge S \in U \implies \bigvee -S \in U \implies -s \in U$ for some $s \in S \implies S \nsubseteq U$, so 3) \implies 2).

Boolean algebras 2

Corollary

For a Boolean algebra B the following are equivalent:

- 1. B is atomic,
- 2. B is completely representable,
- 3. B is meet-completely representable,
- 4. B is join-completely representable.

(that a BA is completely representable iff it is atomic was first proved in Hirsch and Hodkinson [3]).

Examples

A distributive lattice both meet-completely representable and join-completely representable but not completely representable:

Let $L = [0,1] \subseteq \mathbb{R}$. Then by taking $\{\{y : y \ge x\} : x \in L\}$ we obtain a distinguishing set of complete, prime filters, and by taking $\{\{y : y > x\} : x \in L\}$ we obtain a distinguishing set of completely-prime filters.

However, if F is a complete filter of L then $\bigwedge F \in F$ (by completeness properties of L and F) and, since

 $\bigwedge F = \bigvee \{x \in L : x < \bigwedge F\}$, F cannot be completely prime.

Examples 2

A distributive lattice neither meet-completely nor join-completely representable: We can take any BA that fails to be atomic.

A distributive lattice join-completely representable but not meet-completely representable:

Class definitions

- **DL**: the class of bounded, distributive lattices.
- CRL: the class of completely representable bounded, distributive lattices.
- mCRL: the class of meet-completely representable bounded, distributive lattices.
- jCRL: the class of join-completely representable bounded, distributive lattices.
- biCRL: the class of bounded, distributive lattices both meet-completely and join-completely representable.

The previous examples show the following:

 $\mathsf{CRL} \subset \mathsf{bi}\mathsf{CRL} = \mathsf{mCRL} \cap \mathsf{j}\mathsf{CRL} \subset \mathsf{mCRL} \neq \mathsf{j}\mathsf{CRL} \subset \mathsf{DL}$

The question

As 'being atomic' is a first order property of Boolean algebras we have (re)proved* that the class of completely representable BAs is elementary.

Question What about CRL, mCRL, jCRL and biCRL?

CRL is not elementary

Theorem

CRL is not closed under elementary equivalence.

Proof.

The lattice L = [0, 1] from a previous example is not in **CRL**, however the lattice $L' = [0, 1] \cap \mathbb{Q}$ is in **CRL** as for every irrational r the set $\{a \in L' : a > r\}$ is a complete, completely-prime filter. L and L' are elementarily equivalent as \mathbb{R} and \mathbb{Q} are. We shall see that **mCRL** is precisely the algebra sorted first order reduct of the class of models of a (finite) theory in two-sorted FOL, and thus is pseudo-elementary. The proof can be adapted easily for the other classes under consideration.

CRL etc. are pseudoelementary 2

First some basic definitions:

- $\mathscr{L} = \{+, \cdot, 0, 1\}$ is the language of bounded lattices in FOL.
- *L*⁺ = *L* ∪{∈ (A, S)} is a two sorted language with sorts A and S and additional two sorted binary predicate ∈.

Here the $\boldsymbol{\mathsf{A}}$ sort will specify lattice elements and the $\boldsymbol{\mathsf{S}}$ sort sets of these elements.

Define additional predicates in \mathscr{L}^+ as follows:

- ► P(S) holds whenever s is a 'prime filter' with regards ∈ and the A sorted lattice operations.
- ► I(A, S) holds when a is the infimum of s with regards ∈ and the A sorted lattice operations.
- ► $C(\mathbf{S})$ holds iff $\forall t \forall a (((t \subseteq s) \land (I(a, s)) \rightarrow (a \in s)))$, so C says roughly that s is complete with respect to the \mathbf{S} sort.

CRL etc. are pseudoelementary 4

Let T be the \mathscr{L} theory of bounded, distributive lattices. Let T^+ be the natural translation of T into \mathscr{L}^+ with the following additional axioms:

1.
$$\forall ab (a \neq b \rightarrow \exists s ((P(s) \land C(s)) \land (((a \in s) \land (b \notin s)) \lor ((b \in s) \land (a \notin s))))))$$

2. $\forall a \exists s ((b > a) \leftrightarrow (b \in s))$
3. $\forall st \exists u \forall a (((a \in s) \land (a \in t)) \leftrightarrow (a \in u)))$

CRL etc. are pseudoelementary 5

Lemma

The class $\{M^{\mathbf{A}} \mid_{\mathscr{L}} : M \models T^+\}$ of **A** sort \mathscr{L} -reducts of models of T^+ is precisely **mCRL**.

Proof.

Clearly if L is in **mCRL** its elements satisfy T and L, $\mathscr{P}(L)$ and set theoretic \in satisfy T^+ .

Conversely, axiom 1 ensures such a model has a distinguishing set of prime filters each satisfying the form of completeness specified by our *C* predicate. Axioms 2 and 3 ensure there are enough sets governed by T^+ for *C* to give actual completeness.

Corollary

mCRL is pseudoelementary.

Some well known facts about classes

The following are true of any class \mathscr{C} :

Fact

 $\mathscr C$ is elementary if and only if it is closed under isomorphism, ultraproducts and ultraroots.*

Fact

 \mathscr{C} is pseudoelementary $\implies \mathscr{C}$ is closed under ultraproducts.

*this is a corollary of the main result of Shelah [4].

Ultraroots

Since **CRL** is pseudoelementary and closed under isomorphism, but is not elementary, it cannot be closed under ultraroots. **mCRL**, **jCRL** and **biCRL** will be elementary if and only if they are closed under ultraroots.

Question

Which, if any, of mCRL, jCRL and biCRL are closed under ultraroots?

Note that mCRL is elementary iff jCRL is elementary (by duality), and therefore mCRL is elementary \implies biCRL is elementary (as biCRL = mCRL \cap jCRL).

Some notation:

- For a lattice L, an ordinal I and a non-principle ultrafilter U over 𝒫(I) we denote the ultrapower of L over U by ∏_U L.
- For $a \in L$ define $\bar{a} \in \prod_{I} L$ by $\bar{a}(i) = a$ for all $i \in I$.
- ▶ For $S \subseteq L$ define $S^* = \{ [x] \in \prod_U L : \{i \in I : x(i) \in S\} \in U \}$

Is there an L with $\prod_U L$ in **mCRL** but L not in **mCRL**?

I don't know, but *if* such an L does exist it must have certain properties:

Proposition

If $\prod_U L$ has a meet-complete representation then L is $\lor(\bigwedge)$ -distributive.

Proof.

It is straightforward to show that if $S \subseteq L$ and $\bigwedge S$ exists in L then $\bigwedge(S^*)$ exists in $\prod_U L$ and equals $[\bigwedge S]$. Moreover, in light of this if there is some $A \cup \{b\} \subseteq L$ with $b \lor \bigwedge A \neq \bigwedge(b \lor A)$ then $\bigwedge A^* \lor [\bar{b}] = [\bigwedge A] \lor [\bar{b}] = [(\bigwedge A) \lor b] \neq [(\bigwedge(A \lor b)] = \bigwedge(A^* \lor [\bar{b}])$, so if L is not $\lor(\bigwedge)$ -distributive then neither is $\prod_U L$. Since when $\prod_U L$ is in **mCRL** it inherits $\lor(\bigwedge)$ -distributive from its representation we have the result.

Note that the converse to this is false as, for example, every BA is $\vee(\bigwedge)$ -distributive but not nec. atomic.

Proposition

If $\prod_U L$ has a meet-complete representation but L does not then there is a pair x < y such that for every pair $a < b \in [x, y]$ there is some c with a < c < b.

Proof.

Since $\prod_U L$ is in **mCRL**, for each pair $a, b \in L$ there is a cpf γ distinguishing $[\bar{a}]$ and $[\bar{b}]$. It's easy to show that if a < b and $(a, b) = \emptyset$ the set $\gamma_* = \{c \in L : [\bar{c}] \in \gamma\}$ is a cpf of L with $b \in \gamma_*$ and $a \notin \gamma_*$. Since to distinguish arbitrary a and b it is sufficient to distinguish e.g. a and $a \lor b$, if for every pair a < b we have $(a, b) = \emptyset$ the meet-complete representability of $\prod_U L$ passes back to L via the cpfs γ_* .

Note that by duality the same result holds for join-complete representations.

Work in progress

- Find and examine the elementary closures of CRL, mCRL, jCRL and biCRL. Since they are pseudoelementary there is a procedure for calculating these.
- Continue investigation of closure of mCRL, jCRL and biCRL under ultraroots.

References

G. Birkhoff. On the combination of subalgebras. *Proc. Camb. Philos. Soc.*, 29:441–464, 1933.

G. Birkhoff and O. Frink Jr.

Representations of lattices by sets.

Transactions of the American Mathematical Society, 64:299–316, 1948.

R. Hirsch and I. Hodkinson.

Complete representations in algebraic logic. *Journal of Symbolic Logic*, 62:816–847, 1997.

S. Shelah.

Every two elementarily equivalent models have isomorphic ultrapowers.

Israel Journal of Mathematics, 10:224–233, 1971.