Axiomatizability of Algebras of Binary Relations

Szabolcs Mikulás
Department of Computer Science and Information Systems
Birkbeck, University of London
szabolcs@dcs.bbk.ac.uk

22/09/2010

Algebras of binary relations
Let Λ be a signature and $\mathfrak{A}=(A, \Lambda)$ be an algebra. We say that \mathfrak{A} is an algebra of binary relations if $A \subseteq \mathcal{P}(U \times U)$ for some set U and each operation in Λ is interpreted as a "natural" operation on relations.
as composition of relations
is interpreted as converse of relations
1^{\prime} is the identity constant

0 is the empty set.
Other possible operations include reflexive-transitive closure *, the residuals

Algebras of binary relations

Let Λ be a signature and $\mathfrak{A}=(A, \Lambda)$ be an algebra. We say that \mathfrak{A} is an algebra of binary relations if $A \subseteq \mathcal{P}(U \times U)$ for some set U and each operation in Λ is interpreted as a "natural" operation on relations.
For instance, + is union, • is intersection, - is complement, ; is interpreted as composition of relations

$$
x ; y=\{(u, v) \in U \times U: \exists w((u, w) \in x \text { and }(w, v) \in y)\}
$$

\smile is interpreted as converse of relations

$$
x^{\smile}=\{(u, v) \in U \times U:(v, u) \in x\}
$$

1^{\prime} is the identity constant

$$
1^{\prime}=\{(u, v) \in U \times U: u=v\}
$$

0 is the empty set.
Other possible operations include reflexive-transitive closure *, the residuals

Algebras of binary relations

Let Λ be a signature and $\mathfrak{A}=(A, \Lambda)$ be an algebra. We say that \mathfrak{A} is an algebra of binary relations if $A \subseteq \mathcal{P}(U \times U)$ for some set U and each operation in Λ is interpreted as a "natural" operation on relations.
For instance, + is union, • is intersection, - is complement, ; is interpreted as composition of relations

$$
x ; y=\{(u, v) \in U \times U: \exists w((u, w) \in x \text { and }(w, v) \in y)\}
$$

\smile is interpreted as converse of relations

$$
x^{\smile}=\{(u, v) \in U \times U:(v, u) \in x\}
$$

1^{\prime} is the identity constant

$$
1^{\prime}=\{(u, v) \in U \times U: u=v\}
$$

0 is the empty set.
Other possible operations include reflexive-transitive closure *, the residuals \and / of composition, domain d and range r, etc.

RRA and RKA

We denote the class of algebras of binary relations of the signature Λ by $R(\Lambda)$. The quasivariety and the variety generated by $R(\Lambda)$ are denoted by $\mathrm{Q}(\tau)$ and $\mathrm{V}(\Lambda)$.
The class of representable relation algebras is

$$
\operatorname{RRA}=\mathrm{Q}\left(+, \cdot,-, 0, ;,^{\smile}, 1^{\prime}\right)=\mathrm{V}\left(+, \cdot,-, 0, ;,{ }^{-}, 1^{\prime}\right)
$$

The class of relational Kleene algebras is

$$
\mathrm{RKA}=\mathrm{R}\left(+, 0, ;,^{*}, 1^{\prime}\right)
$$

For which Λ is the (quasi)equational theory of $R(\Lambda)$ finitely axiomatizable?

RRA and RKA

We denote the class of algebras of binary relations of the signature Λ by $R(\Lambda)$. The quasivariety and the variety generated by $R(\Lambda)$ are denoted by $\mathrm{Q}(\tau)$ and $\mathrm{V}(\Lambda)$.
The class of representable relation algebras is

$$
\operatorname{RRA}=\mathrm{Q}\left(+, \cdot,-, 0, ;,^{\smile}, 1^{\prime}\right)=\mathrm{V}\left(+, \cdot,-, 0, ;, \smile, 1^{\prime}\right)
$$

The class of relational Kleene algebras is

$$
\mathrm{RKA}=\mathrm{R}\left(+, 0, ;,^{*}, 1^{\prime}\right)
$$

The question

For which Λ is the (quasi)equational theory of $R(\Lambda)$ finitely axiomatizable?

Motivations

- The (quasi)equational theory of RRA is not finitely axiomatizable (Monk). For which fragment of RRA is there a finite axiomatization?
- Dynamic semantics: Lambek calculus (van Benthem), Situation theory: channel algebras (Barwise, Seligman)
- Completeness of (fragments of) substructural logics: relevance logic (Dunn, Kowalski, Maddux), linear logic (Dunn)
- Program semantics: domain algebras (Desharnais, Jipsen, Struth, etc., Kleene algebras (Conway, Kozen, etc.)

Variations on finite axiomatizability

Is the quasivariety $Q(\Lambda)$ generated by $R(\Lambda)$ finitely axiomatizable?

Quasiequational theory - representability of all algebras of $\operatorname{Mod}(\mathrm{Qeq})$ strong completeness (semantical consequence)

Is the variety $V(\Lambda)$ generated by $R(\Lambda)$ finitely axiomatizable?

Equational theory - representability of the free algebra of $\operatorname{Mod}(\mathrm{Eq})$ weak completeness (validities)

Positive RRA fragments

Λ is a positive RRA-subsignature containing composition ; and at least one of the lattice operations join + or meet \cdot. (Including 0 does not change the results.)

	$\mathrm{Q}(\Lambda)$	$\mathrm{V}(\Lambda)$
$\Lambda=\{\cdot, ;\}$	Yes	Yes
$\Lambda=\left\{\cdot, ;, 1^{\prime}\right\}$	No	Yes
$\Lambda \supseteq\left\{\cdot, ;, \smile^{\prime}\right\}$	No	No
$\Lambda \supseteq\{+, ;\}$	No	
$\Lambda \nsupseteq\left\{\cdot, ;,,^{\smile}\right\}$		Yes

Table: Finite axiomatizability of positive RRA fragments, Andréka and Mikulás $A U$ to appear

Term graphs

For $\Lambda \subseteq\left\{\cdot, ;,{ }^{`}, 1^{\prime}, 0\right)$, we define term graphs

$$
G(\sigma)=(V(\sigma), E(\sigma), \iota(\sigma), o(\sigma))
$$

as special 2-pointed, labelled graphs by induction on the complexity of Λ-terms. Let $G(0)$ be the empty graph,

$$
G\left(1^{\prime}\right)=\left(\{\iota\},\left\{\left(\iota, 1^{\prime}, \iota\right)\right\}, \iota, \iota\right)
$$

and for variable x,

$$
G(x)=\left(\{\iota, o\},\left\{\left(\iota, 1^{\prime}, \iota\right),(\iota, x, o),\left(o, 1^{\prime}, o\right)\right\}, \iota, o\right)
$$

For terms σ and τ, we set

$$
\begin{array}{ll}
G(\sigma \cdot \tau)=G(\sigma) \cdot G(\tau) & \text { (almost) disjoint union } \\
G(\sigma ; \tau)=G(\sigma) ; G(\tau) & \text { concatenation }
\end{array}
$$

and $G\left(\sigma^{\smile}\right)$ is $G(\sigma)$ with ι and o interchanged.

Validity and derivability

Andréka and Bredikhin AU 1995
$\mathrm{R}(\Lambda) \models \sigma \leq \tau$ iff there is a homomorphism $G(\tau) \rightarrow G(\sigma)$.
For $\wedge \nsupseteq\{\cdot, ;, \smile\}$, there is a finite Eq_{\wedge} such that
Andréka and Mikulás $A U$ to appear
$\mathrm{Eq}_{\wedge} \vdash \sigma \leq \tau$ iff there is a homomorphism $G(\tau) \rightarrow G(\sigma)$.
Hence $\mathfrak{F r}(\mathrm{V}(\Lambda))=\mathfrak{F r}\left(\operatorname{Mod}\left(\mathrm{Eq}_{\Lambda}\right)\right)$.

The free algebra $\mathfrak{F r}(\bigvee(\Lambda))$
Let

$$
T G(\Lambda)=(V, E)=\biguplus_{\sigma}(V(\sigma), E(\sigma))
$$

disjoint union of (non-pointed reducts of) all Λ-term graphs. Define

$$
R_{X}=\{(u, v):(u, x, v) \in E\}
$$

and let $\mathfrak{T} \mathfrak{G}(\Lambda)$ be the Λ-algebra generated by R_{x}.

Using additivity of the operations this can be extended to $+\in \Lambda$: close $\mathfrak{T} \mathfrak{G}(\Lambda)$ under union (and define $G(\sigma+\tau)$ as union of graphs).

The free algebra $\mathfrak{F r}(\bigvee(\Lambda))$

Let

$$
T G(\Lambda)=(V, E)=\biguplus_{\sigma}(V(\sigma), E(\sigma))
$$

disjoint union of (non-pointed reducts of) all Λ-term graphs. Define

$$
R_{X}=\{(u, v):(u, x, v) \in E\}
$$

and let $\mathfrak{T} \mathfrak{G}(\Lambda)$ be the Λ-algebra generated by R_{x}.

Andréka and Bredikhin AU 1995

$\mathfrak{T} \mathfrak{G}(\Lambda)$ is the free algebra $\mathfrak{F r}(\mathrm{V}(\Lambda))$ of $\mathrm{V}(\Lambda)$.
Using additivity of the operations this can be extended to $+\in \Lambda$: close $\mathfrak{T} \mathfrak{G}(\Lambda)$ under union (and define $G(\sigma+\tau)$ as union of graphs).
This helps to find out what are the validities in the variety (e.g., $1^{\prime} \leq x+y$ iff $1^{\prime} \leq x$ or $1^{\prime} \leq y$).

Residuals

Recall the interpretation of the residuals of composition in representable algebras

$$
\begin{aligned}
& x \backslash y=\{(u, v) \in U \times U: \forall w((w, u) \in x \text { implies }(w, v) \in y)\} \\
& x / y=\{(u, v) \in U \times U: \forall w((u, w) \in y \text { implies }(v, w) \in x)\}
\end{aligned}
$$

Main properties:

$$
y \leq x \backslash z \Longleftrightarrow x ; y \leq z \Longleftrightarrow x \leq z / y
$$

But also:

$$
x \leq y \Rightarrow z \leq z ; x \backslash y \text { etc. }
$$

Lower semilattice-ordered residuated semigroups, (Andréka and Mikulás JoLLI 1994)
$\mathrm{Q}(\cdot, ;, \backslash, /)=\mathrm{V}(\cdot, ;, \backslash, /)$ is finitely axiomatizable.

Distributive lattice-ordered residuated semigroups

Hirsch and Mikulás RSL to appear
For $\wedge \supseteq\{+, \cdot, \backslash\}$, the (quasi)equational theory of $R(+, \cdot, \backslash)$ is not finitely axiomatizable.

The same holds if we assume commutativity: for every $x, y \in A$ and u, v, w,
$(u, w) \in x$ and $(w, v) \in y$ imply $\left(u, w^{\prime}\right) \in y$ and $\left(w^{\prime}, v\right) \in x$ for some w^{\prime}
and/or density: for every $x \in A$ and u, v,

$$
(u, v) \in x \text { implies }(u, w) \in x \text { and }(w, v) \in x \text { for some } w
$$

Distributive lattice-ordered residuated semigroups

Hirsch and Mikulás RSL to appear

For $\wedge \supseteq\{+, \cdot, \backslash\}$, the (quasi)equational theory of $\mathrm{R}(+, \cdot, \backslash)$ is not finitely axiomatizable.

The same holds if we assume commutativity: for every $x, y \in A$ and u, v, w,

$$
(u, w) \in x \text { and }(w, v) \in y \text { imply }\left(u, w^{\prime}\right) \in y \text { and }\left(w^{\prime}, v\right) \in x \text { for some } w^{\prime}
$$

and/or density: for every $x \in A$ and u, v,

$$
(u, v) \in x \text { implies }(u, w) \in x \text { and }(w, v) \in x \text { for some } w
$$

NFA of $\mathrm{V}(+, \cdot, \backslash)$ with composition

For every $n \in \omega, \mathfrak{A}_{n}$ is a finite, integral, symmetric, commutative and dense relation algebra.
\mathfrak{A}_{n} has (among others) the following atoms: greens g_{i}, yellows y_{j} and reds r_{j} for $i \in n+1$ and $j \in n$.
Composition is defined so that

$$
\begin{aligned}
g_{i} ; g_{j} \cdot g_{k}=y_{i} ; y_{j} \cdot y_{k} & =0 \text { unless } i=j=k \\
& g_{i} ; g_{j} \cdot y_{k}
\end{aligned}=0 \text { unless }|i-j|=1 .
$$

\mathfrak{A}_{n} is not representable.
By an indirect argument: $g_{i} \leq y_{i} ; g_{i+1}$, whence there are u_{i}, v such that $\left(u_{i}, v\right) \in g_{i}$ and $\left(u_{i}, u_{i+1}\right) \in y_{i}$. Then $\left(u_{i}, u_{i+2}\right) \in r_{2}$ (there are no yellow and green triangles). Similarly, $\left(u_{i}, u_{i+j}\right) \in r_{j}$ for $j \leq 5$.
Consider, say, the triangle u_{0}, u_{5}, u_{7} where $\left(u_{0}, u_{5}\right) \in r_{5}$ and $\left(u_{5}, u_{7}\right) \in r_{2}$. We have $\left(u_{0}, u_{7}\right) \in r_{i}$ for some i such that $i \equiv_{5} 7$ and $i=5+2$ or $5=i+2$ or $2=5+i$. Thus $i=7$. Similarly, $\left(u_{0}, u_{n}\right) \in r_{n}$, a contradiction.

Nontrivial ultraproducts of \mathfrak{A}_{n} are representable.
The contradiction disappears in the infinity (10 pages)
The same argument can be told without using composition (a more indirect
argument) and using an equation ("residuals are implications", see Pratt)

\mathfrak{A}_{n} is not representable.

By an indirect argument: $g_{i} \leq y_{i} ; g_{i+1}$, whence there are u_{i}, v such that $\left(u_{i}, v\right) \in g_{i}$ and $\left(u_{i}, u_{i+1}\right) \in y_{i}$. Then $\left(u_{i}, u_{i+2}\right) \in r_{2}$ (there are no yellow and green triangles). Similarly, $\left(u_{i}, u_{i+j}\right) \in r_{j}$ for $j \leq 5$.
Consider, say, the triangle u_{0}, u_{5}, u_{7} where $\left(u_{0}, u_{5}\right) \in r_{5}$ and $\left(u_{5}, u_{7}\right) \in r_{2}$. We have $\left(u_{0}, u_{7}\right) \in r_{i}$ for some i such that $i \equiv_{5} 7$ and $i=5+2$ or $5=i+2$ or $2=5+i$. Thus $i=7$. Similarly, $\left(u_{0}, u_{n}\right) \in r_{n}$, a contradiction.

Nontrivial ultraproducts of \mathfrak{A}_{n} are representable.
The contradiction disappears in the infinity (10 pages).
The same argument can be told without using composition (a more indirect argument) and using an equation ("residuals are implications", see Pratt).

Interpreting relevance logic

\mathfrak{A} a commutative and dense family of binary relations closed under $\cdot,+, \backslash$, v a valuation such that \wedge, \vee and \rightarrow are interpreted as $\cdot,+$ and \backslash, respectively.
Sound semantics for \mathbf{R}_{+}:

$$
\mathfrak{A} \models \varphi \Longleftrightarrow \mathrm{Id} \subseteq v(\varphi)
$$

> Incompleteness of \mathbf{R}_{+}
> The relevance logic \mathbf{R}_{+}is not complete w.r.t. binary relations even if we expand it with finitely many axioms and standard derivation rules.

By the previous theorem and noting that $\sigma \leq \tau$ is valid iff $I d \subseteq \sigma \backslash \tau$

Interpreting relevance logic

\mathfrak{A} a commutative and dense family of binary relations closed under $\cdot,+, \backslash$, v a valuation such that \wedge, \vee and \rightarrow are interpreted as $\cdot,+$ and \backslash, respectively.
Sound semantics for \mathbf{R}_{+}:

$$
\mathfrak{A} \models \varphi \Longleftrightarrow \mathbf{I d} \subseteq v(\varphi)
$$

Incompleteness of \mathbf{R}_{+}

The relevance logic \mathbf{R}_{+}is not complete w.r.t. binary relations even if we expand it with finitely many axioms and standard derivation rules.

By the previous theorem and noting that $\sigma \leq \tau$ is valid iff Id $\subseteq \sigma \backslash \tau$.

Open problems for the residuals

Probably not, see nfa of $Q\left(\cdot, ; 1^{\prime}\right)$ (Hirsch and Mikulás $A U$ 2007):
??? Lower semilattice-ordered residuated monoids ???
Is the equational theory of $\mathrm{R}\left(\cdot,,, \backslash, /, 1^{\prime}\right)$ finitely axiomatizable?
Would be nice, cf. nfa of $\mathrm{Q}(+, ;)$ (Andréka $A U$ 1991):
??? Upper semilattice-ordered residuated semigroups/monoids ???
Are the equational theories of $\mathrm{R}(+, ;, \backslash, /)$ and $\mathrm{R}\left(+, ;, \backslash, /, 1^{\prime}\right)$ finitely axiomatizable?

When everything else fails

Finite quasiaxiomatization

Is there a finitely axiomatizable quasivariety K such that $\mathrm{V}(\mathrm{K})=\mathrm{V}(\Lambda)$?
Equational theory using quasiequations - weak completeness with additional rules (preserve validities, are not valid in individual algebras). NOT irreflexivity rule!
\square
where * is reflexive-transitive closure.

When everything else fails

Finite quasiaxiomatization

Is there a finitely axiomatizable quasivariety K such that $\mathrm{V}(\mathrm{K})=\mathrm{V}(\Lambda)$?
Equational theory using quasiequations - weak completeness with additional rules (preserve validities, are not valid in individual algebras). NOT irreflexivity rule!

Kleene algebras, e.g., Kozen IC 1994

There is a finitely axiomatizable quasivariety generating the variety $\mathrm{V}\left(+, 0, ;,{ }^{*}, 1^{\prime}\right)$
where * is reflexive-transitive closure.

Kleene challenges

Can the graph-method be used for the following?
??? Kleene lattices ???
Find a finitely axiomatizable quasivariety that generates the variety $\mathrm{V}\left(+, \cdot, 0, ;^{*}, 1^{\prime}\right)$.
 as $\mathfrak{T} \mathfrak{G}\left(+, \cdot, 0, ;,^{*}, 1^{\prime}\right)$. That is,

Find a finite set Qeq of quasiequations such that $\mathfrak{F r}(\operatorname{Mod}(\mathrm{Qeq}))=\mathfrak{F r}\left(V\left(+, \cdot, 0, ;,{ }^{*}, 1^{\prime}\right)\right)$. Must be even harder:
\square Are there finitely axiomatizable quasivarieties that generate the varieties

Kleene challenges

Can the graph-method be used for the following?

??? Kleene lattices ???

Find a finitely axiomatizable quasivariety that generates the variety $\mathrm{V}\left(+, \cdot, 0, ;,{ }^{*}, 1^{\prime}\right)$.

The free algebra $\mathfrak{F r}\left(V\left(+, \cdot, 0, ;,^{*}, 1^{\prime}\right)\right)$ of $\mathrm{V}\left(+, \cdot, 0, ;,^{*}, 1^{\prime}\right)$ can be described as $\mathfrak{T} \mathfrak{G}\left(+, \cdot, 0, ;,^{*}, 1^{\prime}\right)$. That is,

$$
G\left(\sigma^{*}\right)=\bigcup_{n} G\left(\sigma^{n}\right)
$$

Find a finite set Qeq of quasiequations such that $\mathfrak{F r}(\operatorname{Mod}(\mathrm{Qeq}))=\mathfrak{F r}\left(V\left(+, \cdot, 0, ;,{ }^{*}, 1^{\prime}\right)\right)$.

Kleene challenges

Can the graph-method be used for the following?

??? Kleene lattices ???

Find a finitely axiomatizable quasivariety that generates the variety $\mathrm{V}\left(+, \cdot, 0, ;,{ }^{*}, 1^{\prime}\right)$.

The free algebra $\mathfrak{F r}\left(V\left(+, \cdot, 0, ;,^{*}, 1^{\prime}\right)\right)$ of $\mathrm{V}\left(+, \cdot, 0, ;,^{*}, 1^{\prime}\right)$ can be described as $\mathfrak{T} \mathfrak{G}\left(+, \cdot, 0, ;{ }^{*}, 1^{\prime}\right)$. That is,

$$
G\left(\sigma^{*}\right)=\bigcup_{n} G\left(\sigma^{n}\right)
$$

Find a finite set Qeq of quasiequations such that $\mathfrak{F r}(\operatorname{Mod}(\mathrm{Qeq}))=\mathfrak{F r}\left(V\left(+, \cdot, 0, ;,{ }^{*}, 1^{\prime}\right)\right)$. Must be even harder:
??? Action algebras and action lattices ???
Are there finitely axiomatizable quasivarieties that generate the varieties $\mathrm{V}\left(+, 0, ;, \backslash, /,^{*}, 1^{\prime}\right)$ and $\mathrm{V}\left(+, \cdot, 0, ;, \backslash, /,{ }^{*}, 1^{\prime}\right)$?

