Introduction 0000000	Order & preorder 0000000000	Completion 000000	Free algebras 000	Categorical properties	Conclusion

On homomorphisms of extended-order algebras

Sergejs Solovjovs^{1,2}

¹Department of Mathematics, University of Latvia e-mail: sergejs.solovjovs@lu.lv

²Institute of Mathematics and Computer Science, University of Latvia e-mail: sergejs.solovjovs@lumii.lv

Workshop on Lattices, Relations and Kleene Algebras

University College London, London, UK September 21 - 23, 2010

On homomorphisms of extended-order algebras

Introduction 0000000	Order & preorder 0000000000	Completion 000000	Free algebras	Categorical properties	Conclusion 00
Outling					
Outline					

Introduction

2 Extended-order algebras versus partially ordered sets

- 3 Completion of extended-order algebras
- Free extended-order algebras
- 5 Categorical properties of extended-order algebras

6 Conclusion

On homomorphisms of extended-order algebras

Introduction ●000000	Order & preorder	Completion 000000	Free algebras	Categorical properties	Conclusion 00
Different viewpoints	on the same subject				
Implicativ	ve algebras				

1974: H. Rasiowa considers implicative algebras as a possible tool for a uniform algebraic treatment of various logics.

Definition 1

An implicative algebra is an abstract algebra (A, \Rightarrow, V) , where V is a nullary operation and \Rightarrow is a binary operation such that for every $a, b, c \in A$, the following conditions hold:

Introduction ○●○○○○○	Order & preorder 0000000000	Completion 000000	Free algebras	Categorical properties	Conclusion 00		
Different viewpoints on the same subject							
d-algebra	IS						

1999: J. Neggers and H. S. Kim introduce the notion of *d*-algebra as a generalization of BCK-algebras.

Definition 2

A *d*-algebra is a non-empty set X with a constant 0 and a binary operation * satisfying for every $x, y \in X$ the following axioms:

1
$$x * x = 0;$$

if
$$x * y = 0$$
 and $y * x = 0$, then $x = y$.

A *d*-algebra (X, *, 0) is called *d*-transitive provided that for every $x, y, z \in X$, x * y = 0 and y * z = 0 imply x * z = 0.

Meak ev	tended_orde	r algebras			
Different viewpoint	s on the same subject				
Introduction 000000	Order & preorder	Completion 000000	Free algebras	Categorical properties	Conclusion 00

2008: C. Guido and P. Toto provide the concept of weak extendedorder algebra to serve as a common framework for the majority of algebraic structures used in many-valued mathematics.

Definition 3

A weak extended-order algebra (w-eo algebra) is a triple (L, \rightarrow, \top) , where L is a non-empty set, $L \times L \xrightarrow{\rightarrow} L$ is a binary operation on L, and \top is a distinguished element of L such that for every $a, b, c \in L$ the following conditions are satisfied:

•
$$a \rightarrow \top = \top$$
 (upper bound);

2 $a \rightarrow a = \top$ (reflexivity);

③ if $a \rightarrow b = \top$ and $b \rightarrow a = \top$, then a = b (antisymmetry);

• if $a \to b = \top$ and $b \to c = \top$, then $a \to c = \top$ (transitivity).

Introduction	Order & preorder	Completion	Free algebras	Categorical properties	Conclusion
0000000	0000000000000	000000	000	000000000	00
Relation to the	existing concepts				

W-eo algebras and partially ordered sets

Lemma 4

• Given a w-eo algebra (L, \rightarrow, \top) , the binary relation \leqslant on L with

 $a \leqslant b$ iff $a \rightarrow b = \top$

provides an upper-bounded partially ordered set (L, \leq, \top) .

Given an upper-bounded partially ordered set (L, ≤, ⊤), every binary operation → on L, extending the relation ≤ (a→b=⊤ iff a ≤ b), provides a w-eo algebra (L, →, ⊤).

Lemma 4 backs the use of the term extended-order algebra.

Introduction	Order & preorder 00000000000	Completion 000000	Free algebras 000	Categorical properties	Conclusion 00
Relation to the e	xisting concepts				
Quanta	les				

Elements of the theory of quantales

- A quantale Q is a V-semilattice equipped with an associative binary operation ⊗ (multiplication) distributing across V from both sides: a ⊗ (V S) = V_{s∈S}(a ⊗ s), (V S) ⊗ a = V_{s∈S}(s ⊗ a).
- The multiplication operation \otimes gives rise to two residuations: $a \rightarrow_r b = \bigvee \{ c \in Q \mid a \otimes c \leq b \}, a \rightarrow_I b = \bigvee \{ c \in Q \mid c \otimes a \leq b \}.$
- A special case of the residuations provides two ⊗-pseudocomplementations: a[⊥] = a →_r ⊥, [⊥]a = a →_l ⊥.

The basic operation \otimes gives rise to a variety of derived ones.

Introduction ○○○○○●○	Order & preorder 00000000000	Completion 000000	Free algebras 000	Categorical properties	Conclusion 00
Relation to the e	existing concepts				
and	w-eo algeb	ras			

Elements of the theory of w-eo algebras

- A w-eo algebra (L, →, ⊤) is called complete (w-ceo algebra) provided that the set L with the partial order obtained from → is a complete lattice.
- A w-ceo algebra (L,→,⊤) is called right-distributive (w-crdeo algebra) provided that a→ ∧ S = ∧_{s∈S}(a→s) for every a ∈ L and every S ⊆ L.
- Given a w-crdeo algebra (L, →, ⊤), the operation → provides a binary operation ⊗ on L with a ⊗ b = ∧{c ∈ L | b ≤ a → c}.
- Every w-ceo algebra (L, →, ⊤) comes equipped with a unary operation (−)[⊥] defined by a[⊥] = a → ⊥.

 $\begin{tabular}{ll} \hline \end{tabular} I & \end{tabular} The basic operation \rightarrow gives rise to a variety of derived ones, whose properties can be investigated through those of \rightarrow. \end{tabular}$

On homomorphisms of extended-order algebras

Introduction ○○○○○●	Order & preorder 00000000000	Completion 000000	Free algebras 000	Categorical properties	Conclusion 00
Homomorphisms	of extended-order algebra	IS			
Contrib	ution of this	s talk			

2008 - 2010: C. Guido, M. E. Della Stella and P. Toto investigate properties of the operation \rightarrow of a given w-eo algebra (L, \rightarrow, \top) , paying much attention to its derived operations.

The main idea

Base all the algebraic structures of many-valued mathematics on a single binary operation \rightarrow obtained as an extension of partial order.

During their studies, C. Guido *et al.* never consider the topic of homomorphisms of w-eo algebras.

The purpose of the talk

Provide a categorical approach to w-eo algebras, thereby studying properties of homomorphisms of the structures in question.

On homomorphisms of extended-order algebras

Sergejs Solovjovs

University of Latvia

Introduction 0000000	Order & preorder ••••••	Completion 000000	Free algebras	Categorical properties	Conclusion 00				
W-eo algebras as a generalization of partially ordered sets									
The cat	egory of pai	rtiallv ord	ered sets						

Definition 5

Pos is the category, whose

objects are partially ordered sets (posets) (X, \leq), and whose

morphisms are order-preserving (monotone) maps $(X,\leqslant) \xrightarrow{f} (Y,\leqslant)$.

Definition 6

Pos^{\top} is the non-full subcategory of **Pos**, whose objects are upper-bounded posets (X, \leq, \top), and whose morphisms are monotone maps preserving the top element.

0000000		000000	000	0000000000	00
W-eo algebras as	sa generalization of partia	eneralizeo	nosets		

Definition 7

WEOAIg^{\top} is the category, whose objects are w-eo algebras (A, \rightarrow, \top) , and whose morphisms $(A, \rightarrow, \top) \xrightarrow{\varphi} (B, \rightarrow, \top)$ are maps $A \xrightarrow{\varphi} B$ such that **1** for every $a_1, a_2 \in A$, if $a_1 \rightarrow a_2 = \top$, then $\varphi(a_1) \rightarrow \varphi(a_2) = \top$; **2** $\varphi(\top) = \top$.

☐ The category WEOAlg[⊤] provides a direct generalization of the category Pos[⊤].

On homomorphisms of extended-order algebras

Introduction 0000000	Order & preorder	Completion 000000	Free algebras	Categorical properties	Conclusion				
W-eo algebras as a generalization of partially ordered sets									
Categor	ical equivale	ence							

Theorem 8

- There exists a functor **WEOAlg**^{\top} $\xrightarrow{\|-\|}$ **Pos**^{\top} which is defined by $\|(A, \rightarrow, \top) \xrightarrow{\varphi} (B, \rightarrow, \top)\| = (A, \leqslant, \top) \xrightarrow{\varphi} (B, \leqslant, \top)$, where $c_1 \leqslant c_2$ iff $c_1 \rightarrow c_2 = \top$.
- There exists a functor $\mathbf{Pos}^{\top} \xrightarrow{F} \mathbf{WEOAlg}^{\top}$ which is defined by $F((X, \leq, \top) \xrightarrow{f} (Y, \leq, \top)) = (X, \rightarrow, \top) \xrightarrow{f} (Y, \rightarrow, \top)$, where

$$z_1
ightarrow z_2 = egin{cases} op, & z_1 \leqslant z_2 \ z_2, & otherwise. \end{cases}$$

The functors || − || and F provide an equivalence between the categories WEOAlg^T and Pos^T such that || − || ∘ F = 1_{Pos^T}.

Introduction	Order & preorder	Completion	Free algebras	Categorical properties	Conclusion
	0000000000				
W-eo algebras as a	generalization of partially	ordered sets			

A more sophisticated approach

Given a w-eo algebra (A, \rightarrow, \top) and $a, b \in A$, $a \rightarrow b = \top$ is occasionally denoted by $a \leq b$.

Definition 9

WEOAIg^{\leq} is the non-full subcategory of **WEOAIg**^{\top} having the same objects, and whose morphisms $(A, \rightarrow, \top) \xrightarrow{\varphi} (B, \rightarrow, \top)$ are maps $A \xrightarrow{\varphi} B$ such that • $\varphi(a_1 \rightarrow a_2) \leq \varphi(a_1) \rightarrow \varphi(a_2)$ for every $a_1, a_2 \in A$; • $\varphi(\top) = \top$.

Definition 10

WEOAlg^{≤→} is the full subcategory of WEOAlg[≤], whose
objects are w-eo algebras (A, →, ⊤), which satisfy the condition
a → (b → a) = ⊤ for every a, b ∈ A.

Introduction 0000000	Order & preorder	Completion 000000	Free algebras	Categorical properties	Conclusion			
W-eo algebras as a generalization of partially ordered sets								
Obtaine	d adjunctio	n						

Theorem 11

- There exists the restriction $WEOAlg^{\leq \rightarrow} \xrightarrow{\|-\|^{\leq \rightarrow}} Pos^{\top}$ of the functor $WEOAlg^{\top} \xrightarrow{\|-\|} Pos^{\top}$.
- There exists the restriction $\mathbf{Pos}^{\top} \xrightarrow{F^{\leqslant \rightarrow}} \mathbf{WEOAlg}^{\leqslant \rightarrow}$ of the functor $\mathbf{Pos}^{\top} \xrightarrow{F} \mathbf{WEOAlg}^{\top}$.
- $F^{\leqslant \rightarrow}$ is a left-adjoint-right-inverse to $\|-\|^{\leqslant \rightarrow}$.

! The category \mathbf{Pos}^{\top} embeds into the category $\mathbf{WEOAlg}^{\leqslant \rightarrow}$.

Introduction 0000000	Order & preorder	Completion 000000	Free algebras	Categorical properties	Conclusion
W-eo algebras as	a generalization of partia	lly ordered sets			
More bo	ounds in pla	V			

Definition 12

BPos is the non-full subcategory of **Pos**^{\top}, whose objects are bounded posets (X, \leq, \perp, \top), and whose morphisms are monotone maps preserving the bounds.

Definition 13

WEOAlg^{≤⊥} is the non-full subcategory of WEOAlg[≤], whose
objects are w-eo algebras (A, →, ⊤) having some ⊥ ∈ A such that
⊥ → a = ⊤ for every a ∈ A, and whose
morphisms are ⊥-preserving WEOAlg[≤]-morphisms.

Introduction 0000000	Order & preorder	Completion 000000	Free algebras 000	Categorical properties	Conclusion 00
W-eo algebras as a	generalization of partially	ordered sets			

Application to w-eo algebras

Theorem 14

- There exists the restriction $WEOAlg^{\leq \perp} \xrightarrow{\|-\| \leq \perp} BPos$ of the functor $WEOAlg^{\top} \xrightarrow{\|-\|} Pos^{\top}$.
- There exists a functor **BPos** \xrightarrow{G} **WEOAlg** $^{\leq \perp}$ which is given by $G((X, \leq, \perp, \top) \xrightarrow{f} (Y, \leq, \perp, \top)) = (X, \rightarrow, \top) \xrightarrow{f} (Y, \rightarrow, \top)$, where

$$z_1
ightarrow z_2 = egin{cases} op, & z_1 \leqslant z_2 \ ot, & otherwise. \end{cases}$$

• G is a left-adjoint-right-inverse to $\| - \|^{\leq \perp}$.

The category **BPos** embeds into the category **WEOAlg** $\leq \perp$.

Introduction 0000000	Order & preorder	Completion 000000	Free algebras 000	Categorical properties	Conclusion 00						
W-eo algebras as	W-eo algebras as a generalization of preordered sets										
N / I ·		1									

Making a preordered set partially ordered

Definition 15

Prost is the category, whose

objects are preordered sets (X, \leq) (the relation \leq is reflexive and transitive), and whose

morphisms are monotone maps.

Pos is the full subcategory of **Prost**, with the embedding *E*.

Theorem 16

The embedding $Pos \xrightarrow{E} Prost$ has a left adjoint.

Proof.

For a preordered set (X, \leq) , define an equivalence relation $x_1 \sim x_2$ iff $x_1 \leq x_2$ and $x_2 \leq x_1$, and consider the quotient set $(X/\sim, \leq_{\sim})$.

Introduction 0000000	Order & preorder ○○○○○○○○○○○	Completion 000000	Free algebras 000	Categorical properties	Conclusion 00
W-eo algebras as a	a generalization of preord	ered sets			

Weak extended-preorder algebras

Definition 17

WEPOAlg is the category, whose

objects weak extended-preorder algebras (w-epo algebras) are triples (A, \rightarrow, \top) , where *L* is a non-empty set, \rightarrow is a binary operation on *L*, and \top is an element of *L* such that for every *a*, *b*, *c* \in *L*, the following conditions are satisfied:

$$a \to \top = \top; a \to a = \top;$$

③ if $a \rightarrow b = \top$ and $b \rightarrow c = \top$, then $a \rightarrow c = \top$;

and whose

morphisms $(A, \rightarrow, \top) \xrightarrow{\varphi} (B, \rightarrow, \top)$ are maps $A \xrightarrow{\varphi} B$ such that • $\varphi(a_1 \rightarrow a_2) = \varphi(a_1) \rightarrow \varphi(a_2)$ for every $a_1, a_2 \in A$.

! Every w-epo algebra homomorphism is \top -preserving.

Introduction	Order & preorder	Completion	Free algebras	Categorical properties	Conclusion
	0000000000000				
W-eo algebras as a	generalization of preorder	ed sets			

Important subcategories

Definition 18

WEOAIg is the full subcategory of WEPOAIg of w-eo algebras.

Definition 19

WEPOAIg^{*} is the full subcategory of **WEPOAIg**, whose objects (w-epo^{*} algebras) are all w-epo algebras (A, \rightarrow, \top) , which satisfy for every $a, b, c, d \in A$ the following conditions:

• if
$$a \to b = \top$$
, $b \to a = \top$ and $c \to d = \top$, $d \to c = \top$, then
 $(a \to c) \to (b \to d) = \top$ and $(b \to d) \to (a \to c) = \top$;

② if
$$\top \rightarrow (a \rightarrow b) = \top$$
, $\top \rightarrow (b \rightarrow c) = \top$, then $\top \rightarrow (a \rightarrow c) = \top$;

3 if
$$\top \rightarrow (a \rightarrow b) = \top$$
, $\top \rightarrow (b \rightarrow a) = \top$, then $a \rightarrow b = \top$ and $b \rightarrow a = \top$.

WEOAIg is the full subcategory of **WEPOAIg**^{*}, *E* standing for the embedding functor.

On homomorphisms of extended-order algebras

 Introduction
 Order & preorder
 Completion
 Free algebras
 Categorical properties
 Conclusion

 0000000
 000000000
 000
 000
 000
 000
 00

 W-eo algebras as a generalization of preordered sets
 set
 000000000
 000
 000000000

Making a w-eo algebra out of w-epo algebra

Theorem 20

The embedding **WEOAIg** \longrightarrow **WEPOAIg**^{*} has a left adjoint.

Proof.

- Given a w-epo* algebra (A, →, ⊤), define a congruence ~ on
 A by a ~ b iff a → b = ⊤ and b → a = ⊤.
- Define (A/ ~) × (A/ ~) → (A/ ~) by [a] → [b] = [a → b], where [a] = {c ∈ A | a ~ c} is the congruence class of a, and obtain a w-eo algebra (A/ ~, →, [⊤]).
- Easy computations show that the quotient map $A \xrightarrow{p} (A/\sim)$, p(a) = [a] is the required *E*-universal arrow for (A, \rightarrow, \top) .

Introduction 0000000	Order & preorder 00000000000	Completion •00000	Free algebras 000	Categorical properties	Conclusion 00
Completion of w-	eo algebras				
~ .					

Completion of posets

Definition 21

CSLat(\bigvee) is the (non-full) subcategory of **Pos** (the embedding functor denoted by *E*), whose

objects are \bigvee -semilattices (posets having arbitrary \bigvee), and whose morphisms are \bigvee -preserving maps.

Theorem 22

The embedding
$$\mathbf{CSLat}(\bigvee) \xrightarrow{E} \mathbf{Pos}$$
 has a left adjoint.

Proof.

Given a poset (X, \leq) , let $\mathcal{P}_{\downarrow}(X)$ be the collection of all lower sets S of X ($s \in S$ and $x \leq s$ imply $x \in S$). The map X $\xrightarrow{\downarrow(-)} \mathcal{P}_{\downarrow}(X)$, $\downarrow x = \{y \in X \mid y \leq x\}$ provides an *E*-universal arrow for (X, \leq) .

On homomorphisms of extended-order algebras

Introduction 0000000	Order & preorder 00000000000	Completion ○●○○○○	Free algebras	Categorical properties	Conclusion
Completion of w-	eo algebras				
l eft_dist	tributive eo	algebras			

Recall that every w-eo algebra (A, \rightarrow, \top) comes equipped with a partial order induced by the operation \rightarrow .

Definition 23

LDEOAlg^{\leq} is the full subcategory of **WEOAlg**^{\leq}, whose objects are left-distributive eo algebras (Ideo algebras), i.e., w-eo algebras (A, \rightarrow, \top) , which satisfy for every $a, b, c \in A$ and every $S \subseteq A$ the following conditions:

$$\bullet \ (\bigvee S) \to a = \bigwedge_{s \in S} (s \to a), \text{ if the respective } \lor \text{ and } \land \text{ exist};$$

3 if
$$b \to c = \top$$
, then $(a \to b) \to (a \to c) = \top$.

Introduction 0000000	Order & preorder 00000000000	Completion 00●000	Free algebras 000	Categorical properties	Conclusion
Completion of w-	eo algebras				
<u> </u>		1			

Complete left-distributive eo algebras

Definition 24

LDEOAlg^{\leq} (\bigvee) is the (non-full) subcategory of **LDEOAlg**^{\leq} (with the embedding denoted by *E*), whose objects are Ideo algebras, which are also \bigvee -semilattices, and whose morphisms are \bigvee -preserving Ideo algebra homomorphisms.

! The category **LDEOAlg**[≤](∨) provides a substitution for the category **CSLat**(∨).

On homomorphisms of extended-order algebras

Introduction 0000000	Order & preorder 00000000000	Completion 000●00	Free algebras 000	Categorical properties	Conclusion 00
Completion of w-	eo algebras				

Completion of w-eo algebras

Theorem 25

The functor $LDEOAlg^{\leq}(\bigvee) \xrightarrow{E} LDEOAlg^{\leq}$ has a left adjoint.

Proof.

• Define a completion of an Ideo algebra (A, \rightarrow, \top) as follows:

- $\mathcal{P}_{\downarrow}(A) = \{ \downarrow S \mid S \subseteq A \}$, where $\downarrow S = \{ a \in A \mid a \to s = \top \text{ for some } s \in S \}$;
- **2** for $T_1, T_2 \in \mathcal{P}_{\downarrow}(A)$ let $T_1 \rightsquigarrow T_2 = \bigcap_{t_1 \in T_1} \bigcup_{t_2 \in T_2} \downarrow (t_1 \rightarrow t_2);$
- **3** given a family $(T_i)_{i \in I} \subseteq \mathcal{P}_{\downarrow}(A)$ let $\bigvee_{i \in I} \dot{T}_i = \bigcup_{i \in I} T_i$.
- Easy computations show that the map A → P_↓(A) provides an E-universal arrow for (A, →, ⊤).

Introduction 0000000	Order & preorder 00000000000	Completion 000000	Free algebras 000	Categorical properties	Conclusion 00
Completion of w-	eo algebras				

No chance for improvement

The map A ↓(-) 𝒫↓(A), obtained in Theorem 25, has the property ↓ (a → b) =↓ a →↓ b, motivating the change from LDEOAlg[≤] to LDEOAlg. The next lemma dismisses the modification.

Lemma 26

The adjunction of Theorem 25 does not allow the restriction to the category **LDEOAlg**.

Proof.

Consider the Ideo algebra $(\mathbf{2} = \{\bot, \top\}, \leq, \top)$. If the restriction is possible, there exists a **WEOAIg**-morphism $\mathcal{P}_{\downarrow}(\mathbf{2}) \xrightarrow{\varphi} \mathbf{2}$ defined by $\varphi(T) = \bigvee T$. On the other hand, $T_1 = \{\bot\}$ and $T_2 = \emptyset$ provide $\varphi(T_1 \rightsquigarrow T_2) = \bot < \top = \varphi(T_1) \rightarrow \varphi(T_2)$.

Completion of w-eo algebras								
Introduction	Order & preorder	Completion	Free algebras	Categorical properties	Conclusion			
0000000	00000000000	00000	000		00			

Comparison with the result of C. Guido et al.

Definition 27

An eo algebra is a w-eo algebra (A, \rightarrow, \top) , which satisfies for every $a, b, c \in A$ the following conditions:

1 if
$$a \to b = \top$$
, then $(c \to a) \to (c \to b) = \top$;

3) if
$$a \to b = \top$$
, then $(b \to c) \to (a \to c) = \top$.

- C. Guido *et al.* constructed the MacNeille completion of an eo algebra (A, →, ⊤) such that the new operation ~→ provides an extension of the original one.
- The construction of Theorem 25 provides a larger (in terms of cardinality) completion of eo algebras, the additional condition of distributivity used to extend the result to homomorphisms.
- ! The object part of the new framework simplifies the respective procedure of C. Guido *et al.*

On homomorphisms of extended-order algebras

Introduction 0000000	Order & preorder 00000000000	Completion 000000	Free algebras ●00	Categorical properties	Conclusion 00
Free w-eo algebra	s				
F		1			

Free partially ordered sets over sets

• There exists (the obvious) forgetful functor $\mathbf{Pos} \xrightarrow{|-|} \mathbf{Set}$.

Theorem 28

The functor **Pos** $\xrightarrow{|-|}$ **Set** has a left adjoint.

Proof.

Given a set X, the map
$$X \xrightarrow{1_X} |(X, =)|$$
 provides a $|-|$ -universal arrow for X.

On homomorphisms of extended-order algebras

Sergejs Solovjovs

University of Latvia

Introduction 0000000	Order & preorder	Completion 000000	Free algebras 0●0	Categorical properties	Conclusion 00
Free w-eo algebras					

Application to w-eo algebras

Theorem 29

The forgetful functor $WEOAlg^{\leqslant \rightarrow} \xrightarrow{|-|} Set$ has a left adjoint.

Proof.

• Given a set X, define $F(X) = X \biguplus \{\top\}$ and let

$$x o y = \begin{cases} op, & x = y \\ y, & ext{otherwise.} \end{cases}$$

• $(F(X), \rightarrow, \top)$ is in **WEOAlg** $\leqslant \rightarrow$, and the map $X \xrightarrow{\eta} F(X)$ with $\eta(x) = x$ is a |-|-universal arrow for X.

Introduction 0000000	Order & preorder 00000000000	Completion 000000	Free algebras 00●	Categorical properties	Conclusion
Free w-eo algebras					
A .I.I	a second seco	1.1.1.1.1			

Adding more restrictions

Definition 30

WEOAlg^{≤→*} is the full subcategory of WEOAlg^{≤→}, whose
objects (A, →, ⊤) satisfy for every a, b, c ∈ A the next condition:
• if a → b = ⊤ and a → c ≠ ⊤, then a → (b → c) ≠ ⊤.

Theorem 31

There exists the restriction of the adjunction of Theorem 29 to the category $WEOAlg^{\leqslant \rightarrow *}$.

Corollary 32

The monomorphism in both $WEOAlg^{\leqslant \rightarrow}$ and $WEOAlg^{\leqslant \rightarrow *}$ are precisely the injective maps.

On homomorphisms of extended-order algebras

Introduction 0000000	Order & preorder 00000000000	Completion 000000	Free algebras 000	Categorical properties	Conclusion 00
Coseparators of w	v-eo algebras				
6			<u> </u>		

Coseparators in the category of posets

Definition 33

An object *C* of a category **C** is called coseparator provided that for every distinct morphisms $B \xrightarrow{f} A$, $B \xrightarrow{g} A$, there exists a morphism $A \xrightarrow{h} C$ such that $B \xrightarrow{f} A \xrightarrow{h} C \neq B \xrightarrow{g} A \xrightarrow{h} C$.

Lemma 34

Coseparators in **Pos** are precisely the non-discrete (the order is not given by equality) posets.

Coseparators of w-e	o algebras				
				000000000	
Introduction	Order & preorder	Completion	Free algebras	Categorical properties	Conclusion

Coseparators in the category of w-eo algebras

Theorem 35

The coseparators in $WEOAlg^{\leqslant \rightarrow *}$ are precisely the objects having at least two elements.

Proof.

- Given distinct $B \xrightarrow{\varphi} A$, $B \xrightarrow{\psi} A$, choose $b \in B$ with $\varphi(b) \neq \psi(b)$.
- Take some (C, \rightarrow, \top) in **WEOAlg**^{$\leq \rightarrow *$} with $c \in C$, $c \neq \top$.
- Define $A \xrightarrow{\phi} C$ by

$$\phi({\sf a}) = egin{cases} op, & \phi({\sf b}) o {\sf a} = op \ {\sf c}, & ext{otherwise.} \end{cases}$$

• ϕ is in WEOAlg^{$\leq \rightarrow *$} and $\phi \circ \varphi \neq \phi \circ \psi$.

 Introduction
 Order & preorder
 Completion
 Free algebras
 Categorical properties
 Conclusion

 0000000
 000000
 00000
 000
 00
 00
 00

Epimorphisms in the category of posets

Definition 36

A morphism $A \xrightarrow{f} B$ of a category **C** is said to be an epimorphism provided that for all pairs $B \xrightarrow{h} C$, $B \xrightarrow{k} C$ of morphisms such that $h \circ f = k \circ f$, it follows that h = k.

Lemma 37

Epimorphisms in **Pos** *are precisely the morphisms with surjective underlying maps.*

On homomorphisms of extended-order algebras

Introduction

Order & preorder

Completion

Free algebras 000 Categorical properties

Conclusion 00

Epimorphisms in the category of w-eo algebras

Epimorphisms in the category of w-eo algebras

Theorem 38

Epimorphisms in $WEOAlg^{\leqslant \rightarrow}$ are the surjective morphisms.

Proof (the necessity).

- Take a non-surjective $A \xrightarrow{\varphi} B$ in **WEOAlg** $\leqslant \rightarrow$.
- Choose some $b_0 \in B \setminus \varphi^{\rightarrow}(A)$, define $B_* = B \biguplus \{*\}$ and let

$$b_1 \to_* b_2 = \begin{cases} b_1 \to_B b_2, & b_1 \neq * \neq b_2 \\ \top, & b_1 = b_2 = * \text{ or } (b_1 = *, b_2 = b_0) \\ *, & b_1 = b_0, b_2 = * \\ b_0 \to_B b_2, & b_1 = *, b_2 \in B \setminus \{b_0, *\} \\ b_1 \to_B b_0, & b_1 \in B \setminus \{b_0, *\}, b_2 = *. \end{cases}$$

• Let $B \xrightarrow{\psi_1} B_*, \psi_1(b) = b$ and $B \xrightarrow{\psi_2} B_*, \psi_2(b_0) = *;$ otherwise, $\psi_2(b) = b$. It follows that $\psi_1 \circ \varphi = \psi_2 \circ \varphi$ and $\psi_1 \neq \psi_2$.

Introduction 0000000	Order & preorder 00000000000	Completion 000000	Free algebras 000	Categorical properties	Conclusion 00
Epimorphisms in th	ne category of w-eo algeb	iras			
Further i	restriction is	s not pos	sible		

Lemma 39

The WEOAlg^{$\leq \rightarrow$}-object (B_*, \rightarrow_*, \top) constructed in Theorem 38 does not belong to the category WEOAlg^{$\leq \rightarrow *$}.

Proof.

Define $b = b_0$, $b_1 = \top$ and $b_2 = *$. Then $b \rightarrow_* b_1 = \top$, $b \rightarrow_* b_2 \neq \top$, but $b \rightarrow_* (b_1 \rightarrow_* b_2) = \top$.

On homomorphisms of extended-order algebras

Initial morphisms in the category of posets

Definition 40

Let $(\mathbf{A}, |-|)$ be a concrete category over **X**. An **A**-morphism $A \xrightarrow{t} B$ is called initial provided that for every **A**-object *C*, an **X**-morphism $|C| \xrightarrow{g} |A|$ is an **A**-morphism whenever $|C| \xrightarrow{f \circ g} |B|$ is an **A**-morphism.

Theorem 41

In the category **Pos**, a morphism $(X, \leq) \xrightarrow{f} (Y, \leq)$ is initial iff the equivalence $x_1 \leq x_2 \Leftrightarrow f(x_1) \leq f(x_2)$ holds.

Corollary 42

Initial morphisms in **Pos** have injective underlying maps.

On homomorphisms of extended-order algebras

Initial morphisms in the category of w-eo algebras

Theorem 43

A **WEOAlg**^{$\leq \rightarrow$}-morphism $(A, \rightarrow, \top) \xrightarrow{\varphi} (B, \rightarrow, \top)$ is initial iff for every $a_1, a_2 \in A$, the following condition holds:

• $a_1 \to a_2 = \bigvee \{ a \in A \, | \, \varphi(a_2) \leqslant \varphi(a) \leqslant \varphi(a_1) \to \varphi(a_2) \}.$

Corollary 44

Initial **WEOAlg**^{≤→}*-morphisms have injective underlying maps.*

Proof.

Every initial **WEOAlg**^{$\leqslant \rightarrow$}-morphism $(A, \rightarrow, \top) \xrightarrow{\varphi} (B, \rightarrow, \top)$ has the property $a_1 \rightarrow a_2 = \top$ iff $\varphi(a_1) \rightarrow \varphi(a_2) = \top$ for every $a_1, a_2 \in A$.

Introduction 0000000	Order & preorder 00000000000	Completion 000000	Free algebras 000	Categorical properties	Conclusion
Products and co	products of w-eo algebras				
Produc	ts of w-eo a	lgebras			

Theorem 45

The category **WEOAIg** has products of objects.

Proof.

Given some family $((A_i, \rightarrow_i, \top_i))_{i \in I}$ of w-eo algebras, the cartesian product $\prod_{i \in I} A_i$ of the underlying sets, equipped with the pointwise structure, provides the required product in the category **WEOAIg**.

The construction applies to, e.g., the categories $WEOAlg^{\top}$, $WEOAlg^{\leqslant}$, $WEOAlg^{\leqslant} \rightarrow and WEOAlg^{\leqslant} \rightarrow as well.$

On homomorphisms of extended-order algebras

Introduction 0000000	Order & preorder 00000000000	Completion 000000	Free algebras 000	Categorical properties	Conclusion 00					
Products and c	Products and coproducts of w-eo algebras									
~										

Coproducts of w-eo algebras

Theorem 46

The category $WEOAlg^{\leqslant \rightarrow}$ has coproducts of objects.

Proof.

- Take a family $((A_i, \rightarrow_i, \top_i))_{i \in I}$ of **WEOAlg**^{$\leq \rightarrow$}-objects.
- Let $\bigoplus_{i \in I} A_i = (\biguplus_{i \in I} (A_i \setminus \{\top_i\})) \biguplus \{\top\}$ and $\coprod_{i \in I} (A_i, \rightarrow_i, \top_i) = (\bigoplus_{i \in I} A_i, \rightarrow, \top)$, where

$$a
ightarrow b = egin{cases} a
ightarrow_i \ b, & a, b \in A_i ext{ for some } i \in I \ b, & a \in A_i, b \in A_j ext{ and } i
eq j. \end{cases}$$

- For $j \in I$ let $(A_j, \rightarrow_j, \top_j) \xrightarrow{\mu_j} \coprod_{i \in I} (A_i, \rightarrow_i, \top_i), \ \mu_j(a) = a.$
- $((\mu_i)_I, \coprod_{i \in I}(A_i, \rightarrow_i, \top_i))$ provides the required coproduct in the category **WEOAIg** $\leq \rightarrow$.

Introduction	Order & preorder	Completion	Free algebras	Categorical properties	Conclusion
				000000000	
Dual w-eo algebras					

w-eo algebras versus *d*-algebras

Definition 47

Given a w-eo algebra (A, \rightarrow, \top) , its dual (denoted by $(A, \rightarrow, \top)^d$) is the triple $(A, \rightsquigarrow, \bot)$, where $\bot = \top$ and $a \rightsquigarrow b = b \rightarrow a$.

Lemma 48

Every dual w-eo algebra $(A, \rightarrow, \top)^d$ has the following properties:

$$\bullet \perp \rightsquigarrow a = \bot;$$

3) if
$$a \rightsquigarrow b = \bot$$
 and $b \rightsquigarrow a = \bot$, then $a = b$;

9 if
$$a \rightsquigarrow b = \bot$$
 and $b \rightsquigarrow c = \bot$, then $a \rightsquigarrow c = \bot$.

The category **WEOAIg**^d of dual w-eo algebras arises, which is isomorphic to the category of *d*-transitive *d*-algebras provided by J. Neggers and H. S. Kim.

On homomorphisms of extended-order algebras

Different categories of w-eo algebras

- The talk introduced several approaches to homomorphisms of w-eo algebras based on different categories of the structures.
- The two main categories (with w-eo algebras as objects) are:
 - WEOAlg, whose morphisms (A, →, ⊤) ^φ→ (B, →, ⊤) are maps A ^φ→ B with φ(a₁ → a₂)=φ(a₁) → φ(a₂) for every a₁, a₂ ∈ A. The additional property φ(⊤) = ⊤ comes as a consequence.
 - WEOAlg[≤], whose morphisms (A, →, ⊤) → (B, →, ⊤) are maps A → B with φ(a₁ → a₂)≤φ(a₁) → φ(a₂) for every a₁, a₂ ∈ A, and φ(⊤)=⊤.
- Approach 1 backs the algebraic viewpoint on w-eo algebras.
- Approach 2 considers w-eo algebras as an extension of posets.

Introduction 0000000	Order & preorder 0000000000	Completion 000000	Free algebras 000	Categorical properties	Conclusion ⊙●
Final remarks					
Open pro	oblems				

- The talk considered several subcategories of the category WEOAlg[≤], to provide a convenient framework to match different properties of the category Pos.
- The abundance of available subcategories motivates the following problems.

Problem 49

What is the best subcategory of $WEOAlg^{\leq}$ to get a "convenient" analogue of the category **Pos**?

Problem 50

Does there exist a better starting point than the above-mentioned category $WEOAlg^{\leq}$?

On homomorphisms of extended-order algebras

Sergejs Solovjovs

University of Latvia

Introduction 0000000	Order & preorder	Completion 000000	Free algebras 000	Categorical properties	Conclusion
Referen	ces I				

- J. Adámek, H. Herrlich, and G. E. Strecker, *Abstract and Concrete Categories: The Joy of Cats*, Dover Publications (Mineola, New York), 2009.
- C. Guido and M. E. Della Stella, *Associativity, commutativity and symmetry in residuated structures*, Abstracts of the 31st Linz Seminar on Fuzzy Set Theory, Johannes Kepler Universität, Linz, 2010, pp. 60–62.
- C. Guido and P. Toto, *Extended-order algebras*, J. Appl. Log. 6 (2008), no. 4, 609–626.
- J. Neggers and H. S. Kim, *On d-algebras*, Math. Slovaca **49** (1999), no. 1, 19–26.

On homomorphisms of extended-order algebras

Introduction 0000000	Order & preorder	Completion 000000	Free algebras 000	Categorical properties	Conclusion 00		
References II							

- H. Rasiowa, *An Algebraic Approach to Non-Classical Logics*, North-Holland, Amsterdam, 1974.
- K. I. Rosenthal, *Quantales and Their Applications*, Addison Wesley Longman, 1990.
- Y. Shi, B. van Gasse, D. Ruan, and E. E. Kerre, On dependencies and independencies of fuzzy implication axioms, Fuzzy Sets Syst. 161 (2010), no. 10, 1388–1405.
- S. Solovyov, *Extended-order algebras as a generalization of posets*, submitted.
- M. E. Della Stella, *Extended-order algebras and fuzzy implicators*, Asbtracts of ManyVal'10, Università degli Studi dell'Insubria, Varese, Italy, 2010, p. 11.

Introduction 0000000	Order & preorder 0000000000	Completion 000000	Free algebras 000	Categorical properties	Conclusion

Thank you for your attention!

On homomorphisms of extended-order algebras

Sergejs Solovjovs

University of Latvia