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Lattice expansions

A lattice expansion is a pair of an underlying lattice L and a set
{f1, f2, . . .} of ε-operations on L.

〈L, f1, f2, . . .〉

An ε-operation f on L is a n-any monotone function wrt the order
type ε = (ε1, . . . , εn), where each εi is either 1 or ∂.

f : Lε1 × · · · × Lεn → L

Example
The lattice operations ∨ and ∧ are (1, 1)-operations.
The involution ¬ is a ∂-operation.
The implication → is a (∂, 1)-operation.
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Lattice expansions in this talk

To get a syntactic description of canonical inequalities, we focus
on lattice expansions only with ε-additive operations and
ε-multiplicative operations.
An ε-additive operation f is a coordinate-wise join-preserving
function wrt the order type ε. An ε-multiplicative operation g is a
coordinate-wise meet-preserving function wrt the order type ε.

Example
The lattice operation ∨ is (1, 1)-additive.
The implication → is (∂, 1)-multiplicative, because we have

• (a ∨ b) → c = (a → c) ∧ (b → c), and

• a → (b ∧ c) = (a → b) ∧ (a → c).
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Examples of our lattice expansions

• Boolean algebras

• Modal algebras

• Heyting algebras

• Distributive modal algebras

• FL-algebras

• B.C23-algebras

To avoid a possible complication, we consider a lattice expansion
L = 〈L, l , r , c〉 only, where l is (1, 1)-additive, r is
(∂, 1)-multiplicative and c is a constant.



The canonical extension

The canonical extension of L = 〈L, l , r , c〉 is L = 〈L, l↑, r
↓, c〉,

where

1. L is the canonical extension of L,

2. l↑, a.k.a. lσ, is approximated from below by filters (closed
elements),

3. r↓, a.k.a. rπ, is approximated from above by ideals (open
elements),

4. c is the constant.

Approximation...? Let’s recall the construction of canonical
extensions. (on blackboards)
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Canonical extensions of lattices
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• λ(F) := {I ∈ I | ∀F ∈ F. F ∩ I 6= ∅} approximated from
below

• υ(I) := {F ∈ F | ∀I ∈ I. F ∩ I 6= ∅} approximated from
above
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Canonical extensions of ε-operations

We extend l and r as partial functions onto the intermediate level.

1. l : F × F → F ,
l(F ,G ) := {a ∈ L | f ∈ F , g ∈ G . l(f , g) ≤ a}

2. l : I × I → I, l(I , J) := {a ∈ L | i ∈ I , j ∈ J. a ≤ l(i , j)}
3. r : I × F → F , r(I ,F ) := {a ∈ L | i ∈ I , f ∈ F . r(i , f ) ≤ a}
4. r : F × I → I, r(F , I ) := {a ∈ L | f ∈ F , i ∈ I . a ≤ r(f , i)}

We define l↑ and r↓ as approximations as follows.

1. l↑(α, β) := λ({l(F ,G ) | F ∈ α↓,G ∈ β↓})
2. r↓(α, β) := υ({r(F , I ) | F ∈ α↓, I ∈ β↑})
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Canonical inequalities

Definition (Canonical inequality)

Let s, t be terms. An inequality s ≤ t is canonical on a lattice
expansion L, if

L |= s ≤ t ⇐⇒ L |= s ≤ t.

Theorem
An inequality s ≤ t is canonical, if it has consistent variable
occurrence.

Consistent variable occurrence...? (on blackboards)
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Consistent variable occurrence

Example
l(r(x , l(y , z)), l(y , r(x , z)) ≤ r(l(z , r(x , y)), r(l(y , x), z)) has
consistent variable occurrence.

Labelling and signing (on blackboards)

t∪ ::= x | c | t∪ ∨ t∪ | l(t∪, t∪) | t∧
t∩ ::= x | c | t∩ ∧ t∩ | r(t∪, t∩) | t∨
t∨ ::= x | c | t∨ ∨ t∨ | l(t∨, c) | l(c , t∨)

t∧ ::= x | c | t∧ ∧ t∧ | r(t∨, c) | r(c , t∧)



Ghilardi & Meloni’s parallel computation

Their idea is simple.

Extend term functions on L to the intermediate level.

But, how?

The intermediate level is two-sorted (filters and
ideals).

Their answer is

Let’s compute a term function t both as a filter and
as an ideal, in parallel.
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Ghilardi & Meloni’s parallel computation

Intuitively speaking,

t : F × · · · × F → F
t : I × · · · × I → I

But, this is not really precise...

t : (F‖I)× · · · × (F‖I) → F
t(F1‖I1, . . . ,Fn‖In)

t : (I‖F)× · · · × (I‖F) → I
t(I1‖F1, . . . , In‖Fn)
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Outcomes of the parallel computation

Theorem (Rough basis)

Let t be each term. For all α1, . . . , αn ∈ L, and all Fi ≤ αi and all
Ii ≥ αi (1 ≤ i ≤ n), we have

t(F1‖I1, . . . ,Fn‖In) ≤ t(α1, . . . , αn) ≤ t(I1‖F1, . . . , In‖Fn)



A very simple example

The inequality c ≤ l(r(r(x , y), x), x) is canonical.

Sketch.
For arbitrary α, β ∈ L, we want to show

c ≤ l(r(r(α, β), α), α).

It suffices to show c ≤ Y for any ideal Y ≥ l(r(r(α, β), α), α).
Thanks to the parallel computation, for all F ≤ α and I ≥ β,

c ≤ l(r(r(f , i), f ), f ) ≤ a ≤ Y
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Concluding remarks

• A connection to Jónsson’s work tσ and tπ.

tσ ≤ t ≤ tπ


