PARALLEL COMPUTATION AND CANONICITY

Tomoyuki Suzuki

Dept. of Computer Science, University of Leicester, UK

21st September 2010 @ London, UK (revised)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

LATTICE EXPANSIONS

A lattice expansion is a pair of an underlying lattice \mathbb{L} and a set $\{f_1, f_2, \ldots\}$ of ϵ -operations on \mathbb{L} .

$$\langle \mathbb{L}, f_1, f_2, \ldots \rangle$$

An ϵ -operation f on \mathbb{L} is a n-any monotone function wrt the order type $\epsilon = (\epsilon_1, \ldots, \epsilon_n)$, where each ϵ_i is either 1 or ∂ .

 $f: \mathbb{L}^{\epsilon_1} \times \cdots \times \mathbb{L}^{\epsilon_n} \to \mathbb{L}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

EXAMPLE

The lattice operations \lor and \land are (1, 1)-operations. The involution \neg is a ∂ -operation. The implication \rightarrow is a $(\partial, 1)$ -operation.

LATTICE EXPANSIONS

A lattice expansion is a pair of an underlying lattice \mathbb{L} and a set $\{f_1, f_2, \ldots\}$ of ϵ -operations on \mathbb{L} .

$$\langle \mathbb{L}, f_1, f_2, \ldots \rangle$$

An ϵ -operation f on \mathbb{L} is a n-any monotone function wrt the order type $\epsilon = (\epsilon_1, \ldots, \epsilon_n)$, where each ϵ_i is either 1 or ∂ .

 $f: \mathbb{L}^{\epsilon_1} \times \cdots \times \mathbb{L}^{\epsilon_n} \to \mathbb{L}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

EXAMPLE

The lattice operations \lor and \land are (1, 1)-operations. The involution \neg is a ∂ -operation. The implication \rightarrow is a $(\partial, 1)$ -operation.

LATTICE EXPANSIONS

A lattice expansion is a pair of an underlying lattice \mathbb{L} and a set $\{f_1, f_2, \ldots\}$ of ϵ -operations on \mathbb{L} .

$$\langle \mathbb{L}, f_1, f_2, \ldots \rangle$$

An ϵ -operation f on \mathbb{L} is a n-any monotone function wrt the order type $\epsilon = (\epsilon_1, \ldots, \epsilon_n)$, where each ϵ_i is either 1 or ∂ .

 $f: \mathbb{L}^{\epsilon_1} \times \cdots \times \mathbb{L}^{\epsilon_n} \to \mathbb{L}$

EXAMPLE

The lattice operations \lor and \land are (1,1)-operations. The involution \neg is a ∂ -operation. The implication \rightarrow is a (∂ , 1)-operation.

LATTICE EXPANSIONS IN THIS TALK

To get a syntactic description of canonical inequalities, we focus on lattice expansions only with ϵ -additive operations and ϵ -multiplicative operations.

An ϵ -additive operation f is a coordinate-wise join-preserving function wrt the order type ϵ . An ϵ -multiplicative operation g is a coordinate-wise meet-preserving function wrt the order type ϵ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

EXAMPLE

The lattice operation \lor is (1,1)-additive. The implication \rightarrow is (∂ ,1)-multiplicative, because we have

•
$$(a \lor b)
ightarrow c = (a
ightarrow c) \land (b
ightarrow c)$$
, and

•
$$a \rightarrow (b \wedge c) = (a \rightarrow b) \wedge (a \rightarrow c).$$

LATTICE EXPANSIONS IN THIS TALK

To get a syntactic description of canonical inequalities, we focus on lattice expansions only with ϵ -additive operations and ϵ -multiplicative operations.

An ϵ -additive operation f is a coordinate-wise join-preserving function wrt the order type ϵ . An ϵ -multiplicative operation g is a coordinate-wise meet-preserving function wrt the order type ϵ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

The lattice operation \lor is (1,1)-additive. The implication ightarrow is $(\partial,1)$ -multiplicative, because we have

•
$$(a \lor b)
ightarrow c = (a
ightarrow c) \land (b
ightarrow c)$$
, and

•
$$a \rightarrow (b \wedge c) = (a \rightarrow b) \wedge (a \rightarrow c).$$

LATTICE EXPANSIONS IN THIS TALK

To get a syntactic description of canonical inequalities, we focus on lattice expansions only with ϵ -additive operations and ϵ -multiplicative operations.

An ϵ -additive operation f is a coordinate-wise join-preserving function wrt the order type ϵ . An ϵ -multiplicative operation g is a coordinate-wise meet-preserving function wrt the order type ϵ .

- ロ ト - 4 回 ト - 4 □ - 4

EXAMPLE

The lattice operation \lor is (1,1)-additive.

The implication \rightarrow is $(\partial, 1)$ -multiplicative, because we have

•
$$(a \lor b)
ightarrow c = (a
ightarrow c) \land (b
ightarrow c)$$
, and

•
$$a \rightarrow (b \wedge c) = (a \rightarrow b) \wedge (a \rightarrow c).$$

EXAMPLES OF OUR LATTICE EXPANSIONS

- Boolean algebras
- Modal algebras
- Heyting algebras
- Distributive modal algebras
- FL-algebras
- $B.C_{\Box\Diamond}$ -algebras

To avoid a possible complication, we consider a lattice expansion $\mathbf{L} = \langle \mathbb{L}, l, r, c \rangle$ only, where *l* is (1, 1)-additive, *r* is $(\partial, 1)$ -multiplicative and *c* is a constant.

THE CANONICAL EXTENSION

The canonical extension of $\mathbf{L} = \langle \mathbb{L}, l, r, c \rangle$ is $\overline{\mathbf{L}} = \langle \overline{\mathbb{L}}, l_{\uparrow}, r^{\downarrow}, c \rangle$, where

- 1. $\overline{\mathbb{L}}$ is the canonical extension of \mathbb{L} ,
- 2. I_{\uparrow} , a.k.a. I^{σ} , is approximated from below by filters (closed elements),
- 3. r^{\downarrow} , a.k.a. r^{π} , is approximated from above by ideals (open elements),
- 4. *c* is the constant.

Approximation...? Let's recall the construction of canonical extensions. (on blackboards)

THE CANONICAL EXTENSION

The canonical extension of $\mathbf{L} = \langle \mathbb{L}, l, r, c \rangle$ is $\overline{\mathbf{L}} = \langle \overline{\mathbb{L}}, l_{\uparrow}, r^{\downarrow}, c \rangle$, where

- 1. $\overline{\mathbb{L}}$ is the canonical extension of \mathbb{L} ,
- 2. l_{\uparrow} , a.k.a. l^{σ} , is approximated from below by filters (closed elements),
- 3. r^{\downarrow} , a.k.a. r^{π} , is approximated from above by ideals (open elements),
- 4. *c* is the constant.

Approximation...? Let's recall the construction of canonical extensions. (on blackboards)

CANONICAL EXTENSIONS OF LATTICES

- λ(𝔅) := {I ∈ 𝒯 | ∀F ∈ 𝔅. F ∩ I ≠ ∅} approximated from below
- $v(\Im) := \{F \in \mathcal{F} \mid \forall I \in \Im. \ F \cap I \neq \emptyset\}$ approximated from above

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CANONICAL EXTENSIONS OF LATTICES

- λ(𝔅) := {I ∈ 𝒯 | ∀F ∈ 𝔅. F ∩ I ≠ ∅} approximated from below
- v(ℑ) := {F ∈ F | ∀I ∈ ℑ. F ∩ I ≠ ∅} approximated from above

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへ⊙

CANONICAL EXTENSIONS OF LATTICES

- λ(𝔅) := {I ∈ 𝒯 | ∀F ∈ 𝔅. F ∩ I ≠ ∅} approximated from below
- v(ℑ) := {F ∈ F | ∀I ∈ ℑ. F ∩ I ≠ ∅} approximated from above

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへ⊙

We extend I and r as partial functions onto the intermediate level.

1.
$$I: \mathcal{F} \times \mathcal{F} \to \mathcal{F},$$

 $I(F,G) := \{a \in L \mid f \in F, g \in G. \ I(f,g) \leq a\}$
2. $I: \mathcal{I} \times \mathcal{I} \to \mathcal{I}, \ I(I,J) := \{a \in L \mid i \in I, j \in J. \ a \leq I(i,j)\}$
3. $r: \mathcal{I} \times \mathcal{F} \to \mathcal{F}, \ r(I,F) := \{a \in L \mid i \in I, f \in F. \ r(i,f) \leq a\}$
4. $r: \mathcal{F} \times \mathcal{I} \to \mathcal{I}, \ r(F,I) := \{a \in L \mid f \in F, i \in I. \ a \leq r(f,i)\}$
Ve define I_{\uparrow} and r^{\downarrow} as approximations as follows.
1. $h(\alpha, \beta) := \lambda(\{I(F,G) \mid F \in \alpha^{\downarrow}, G \in \beta^{\downarrow}\})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2. $r^{\downarrow}(\alpha,\beta) := v(\{r(F,I) \mid F \in \alpha^{\downarrow}, I \in \beta_{\uparrow}\})$

We extend I and r as partial functions onto the intermediate level.

1.
$$I: \mathcal{F} \times \mathcal{F} \to \mathcal{F},$$

 $I(F, G) := \{a \in L \mid f \in F, g \in G. \ I(f, g) \leq a\}$
2. $I: \mathcal{I} \times \mathcal{I} \to \mathcal{I}, \ I(I, J) := \{a \in L \mid i \in I, j \in J. \ a \leq I(i, j)\}$
3. $r: \mathcal{I} \times \mathcal{F} \to \mathcal{F}, \ r(I, F) := \{a \in L \mid i \in I, f \in F. \ r(i, f) \leq a\}$
4. $r: \mathcal{F} \times \mathcal{I} \to \mathcal{I}, \ r(F, I) := \{a \in L \mid f \in F, i \in I. \ a \leq r(f, i)\}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We define l_{\uparrow} and r^{\downarrow} as approximations as follows.

1.
$$l_{\uparrow}(\alpha, \beta) := \lambda(\{I(F, G) \mid F \in \alpha^{\downarrow}, G \in \beta^{\downarrow}\})$$

2. $r^{\downarrow}(\alpha, \beta) := v(\{r(F, I) \mid F \in \alpha^{\downarrow}, I \in \beta_{\uparrow}\})$

CANONICAL INEQUALITIES

DEFINITION (CANONICAL INEQUALITY)

Let s, t be terms. An inequality $s \le t$ is canonical on a lattice expansion L, if

$$\mathbf{L} \models s \leq t \iff \overline{\mathbf{L}} \models s \leq t.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

THEOREM

An inequality $s \leq t$ is canonical, if it has consistent variable occurrence.

Consistent variable occurrence...? (on blackboards)

CANONICAL INEQUALITIES

DEFINITION (CANONICAL INEQUALITY)

Let s, t be terms. An inequality $s \le t$ is canonical on a lattice expansion L, if

 $\mathbf{L} \models s \leq t \iff \overline{\mathbf{L}} \models s \leq t.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

THEOREM

An inequality $s \le t$ is canonical, if it has consistent variable occurrence.

Consistent variable occurrence...? (on blackboards)

CANONICAL INEQUALITIES

DEFINITION (CANONICAL INEQUALITY)

Let s, t be terms. An inequality $s \le t$ is canonical on a lattice expansion L, if

$$\mathbf{L} \models s \leq t \iff \overline{\mathbf{L}} \models s \leq t.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

THEOREM

An inequality $s \le t$ is canonical, if it has consistent variable occurrence.

Consistent variable occurrence...? (on blackboards)

CONSISTENT VARIABLE OCCURRENCE

EXAMPLE $l(r(x, l(y, z)), l(y, r(x, z)) \le r(l(z, r(x, y)), r(l(y, x), z))$ has consistent variable occurrence.

Labelling and signing (on blackboards)

$$\begin{array}{ll} t_{\cup} & ::=x \mid c \mid t_{\cup} \lor t_{\cup} \mid l(t_{\cup},t_{\cup}) \mid t_{\wedge} \\ t_{\cap} & ::=x \mid c \mid t_{\cap} \land t_{\cap} \mid r(t_{\cup},t_{\cap}) \mid t_{\vee} \\ t_{\vee} & ::=x \mid c \mid t_{\vee} \lor t_{\vee} \mid l(t_{\vee},c) \mid l(c,t_{\vee}) \\ t_{\wedge} & ::=x \mid c \mid t_{\wedge} \land t_{\wedge} \mid r(t_{\vee},c) \mid r(c,t_{\wedge}) \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

Their idea is simple.

Extend term functions on L to the intermediate level. But, how? The intermediate level is two-sorted (filters and

Their answer is

Let's compute a term function t both as a filter and as an ideal, in parallel.

Their idea is simple.

Extend term functions on L to the intermediate level. But, how?

The intermediate level is two-sorted (filters and ideals).

Their answer is

Let's compute a term function t both as a filter and as an ideal, in parallel.

Their idea is simple.

Extend term functions on L to the intermediate level. But, how?

The intermediate level is two-sorted (filters and ideals).

Their answer is

Let's compute a term function t both as a filter and as an ideal, in parallel.

Intuitively speaking,

 $\begin{aligned} t : & \mathcal{F} \times \cdots \times \mathcal{F} \to \mathcal{F} \\ t : & \mathcal{I} \times \cdots \times \mathcal{I} \to \mathcal{I} \end{aligned}$

But, this is not really precise ...

$$t: \quad (\mathcal{F}||\mathcal{I}) \times \cdots \times (\mathcal{F}||\mathcal{I}) \to \mathcal{F}$$
$$t(F_1||I_1, \dots, F_n||I_n)$$
$$t: \quad (\mathcal{I}||\mathcal{F}) \times \cdots \times (\mathcal{I}||\mathcal{F}) \to \mathcal{I}$$
$$t(I_1||F_1, \dots, I_n||F_n)$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Intuitively speaking,

$$\begin{aligned} t : & \mathcal{F} \times \cdots \times \mathcal{F} \to \mathcal{F} \\ t : & \mathcal{I} \times \cdots \times \mathcal{I} \to \mathcal{I} \end{aligned}$$

But, this is not really precise...

$$\begin{split} t : & (\mathcal{F} \| \mathcal{I}) \times \cdots \times (\mathcal{F} \| \mathcal{I}) \to \mathcal{F} \\ & t(F_1 \| I_1, \dots, F_n \| I_n) \\ t : & (\mathcal{I} \| \mathcal{F}) \times \cdots \times (\mathcal{I} \| \mathcal{F}) \to \mathcal{I} \\ & t(I_1 \| F_1, \dots, I_n \| F_n) \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

THEOREM (ROUGH BASIS)

Let t be each term. For all $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{L}}$, and all $F_i \leq \alpha_i$ and all $I_i \geq \alpha_i$ ($1 \leq i \leq n$), we have

 $t(F_1||I_1,\ldots,F_n||I_n) \leq t(\alpha_1,\ldots,\alpha_n) \leq t(I_1||F_1,\ldots,I_n||F_n)$

The inequality $c \leq l(r(r(x, y), x), x)$ is canonical.

SKETCH. For arbitrary $\alpha, \beta \in \overline{\mathbb{L}}$, we want to show

 $c \leq l(r(r(\alpha,\beta),\alpha),\alpha).$

It suffices to show $c \leq Y$ for any ideal $Y \geq I(r(r(\alpha, \beta), \alpha), \alpha)$. Thanks to the parallel computation, for all $F \leq \alpha$ and $I \geq \beta$,

 $c \leq l(r(r(f,i),f),f) \leq a \leq Y$

The inequality $c \leq l(r(r(x, y), x), x)$ is canonical.

SKETCH. For arbitrary $\alpha, \beta \in \overline{\mathbb{L}}$, we want to show

 $c \leq l(r(r(\alpha, \beta), \alpha), \alpha).$

It suffices to show $c \leq Y$ for any ideal $Y \geq I(r(r(\alpha, \beta), \alpha), \alpha)$. Thanks to the parallel computation, for all $F \leq \alpha$ and $I \geq \beta$,

 $c \leq l(r(r(f,i),f),f) \leq a \leq Y$

The inequality $c \leq l(r(r(x, y), x), x)$ is canonical.

SKETCH. For arbitrary $\alpha, \beta \in \overline{\mathbb{L}}$, we want to show

 $c \leq l(r(r(\alpha,\beta),\alpha),\alpha).$

It suffices to show $c \leq Y$ for any ideal $Y \geq I(r(r(\alpha, \beta), \alpha), \alpha)$. Thanks to the parallel computation, for all $F \leq \alpha$ and $I \geq \beta$,

 $c \leq l(r(r(f,i),f),f) \leq a \leq Y$

The inequality $c \leq l(r(r(x, y), x), x)$ is canonical.

SKETCH. For arbitrary $\alpha, \beta \in \overline{\mathbb{L}}$, we want to show

$$c \leq l(r(r(\alpha,\beta),\alpha),\alpha))$$

It suffices to show $c \leq Y$ for any ideal $Y \geq I(r(r(\alpha, \beta), \alpha), \alpha)$. Thanks to the parallel computation, for all $F \leq \alpha$ and $I \geq \beta$,

$$c \leq l(r(r(f,i),f),f)l(r(r(F,I),F),F) \leq a \leq Y$$

The inequality $c \leq l(r(r(x, y), x), x)$ is canonical.

SKETCH. For arbitrary $\alpha, \beta \in \overline{\mathbb{L}}$, we want to show

$$c \leq l(r(r(\alpha,\beta),\alpha),\alpha))$$

It suffices to show $c \leq Y$ for any ideal $Y \geq I(r(r(\alpha, \beta), \alpha), \alpha)$. Thanks to the parallel computation, for all $F \leq \alpha$ and $I \geq \beta$,

$$c \leq l(r(r(f,i),f),f)l(r(r(F,I),F),F) \leq a \leq Y$$

The inequality $c \leq l(r(r(x, y), x), x)$ is canonical.

SKETCH. For arbitrary $\alpha, \beta \in \overline{\mathbb{L}}$, we want to show

$$c \leq l(r(r(\alpha,\beta),\alpha),\alpha))$$

It suffices to show $c \leq Y$ for any ideal $Y \geq I(r(r(\alpha, \beta), \alpha), \alpha)$. Thanks to the parallel computation, for all $F \leq \alpha$ and $I \geq \beta$,

$$c \leq l(r(r(f,i),f),f) \leq a \leq Y$$

The inequality $c \leq l(r(r(x, y), x), x)$ is canonical.

SKETCH. For arbitrary $\alpha, \beta \in \overline{\mathbb{L}}$, we want to show

$$c \leq l(r(r(\alpha,\beta),\alpha),\alpha).$$

It suffices to show $c \leq Y$ for any ideal $Y \geq I(r(r(\alpha, \beta), \alpha), \alpha)$. Thanks to the parallel computation, for all $F \leq \alpha$ and $I \geq \beta$,

$$c \leq l(r(r(f,i),f),f) \leq a \leq Y$$

CONCLUDING REMARKS

• A connection to Jónsson's work t^{σ} and t^{π} .

$$t^{\sigma} \leq t \leq t^{\pi}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ