Parallel COMPUTATION AND CANONICITY

Tomoyuki Suzuki

Dept. of Computer Science, University of Leicester, UK
21st September 2010 @ London, UK (revised)

Lattice expansions

A lattice expansion is a pair of an underlying lattice \mathbb{L} and a set $\left\{f_{1}, f_{2}, \ldots\right\}$ of ϵ-operations on \mathbb{L}.

$$
\left\langle\mathbb{L}, f_{1}, f_{2}, \ldots\right\rangle
$$

An ϵ-operation f on \mathbb{L} is a n-any monotone function wrt the order type $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$, where each ϵ_{i} is either 1 or ∂.

ExAMPLE
The lattice operations V and \wedge are $(1,1)$-operations.
The involution \neg is a ∂-operation.
The implication \rightarrow is a $(\partial, 1)$-operation.

LATTICE EXPANSIONS

A lattice expansion is a pair of an underlying lattice \mathbb{L} and a set $\left\{f_{1}, f_{2}, \ldots\right\}$ of ϵ-operations on \mathbb{L}.

$$
\left\langle\mathbb{L}, f_{1}, f_{2}, \ldots\right\rangle
$$

An ϵ-operation f on \mathbb{L} is a n-any monotone function wrt the order type $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$, where each ϵ_{i} is either 1 or ∂.

$$
f: \mathbb{L}^{\epsilon_{1}} \times \cdots \times \mathbb{L}^{\epsilon_{n}} \rightarrow \mathbb{L}
$$

Example
The lattice operations V and \wedge are $(1,1)$-operations.
The involution \neg is a ∂-operation.
The implication \rightarrow is a $(\partial, 1)$-operation.

LATTICE EXPANSIONS

A lattice expansion is a pair of an underlying lattice \mathbb{L} and a set $\left\{f_{1}, f_{2}, \ldots\right\}$ of ϵ-operations on \mathbb{L}.

$$
\left\langle\mathbb{L}, f_{1}, f_{2}, \ldots\right\rangle
$$

An ϵ-operation f on \mathbb{L} is a n-any monotone function wrt the order type $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$, where each ϵ_{i} is either 1 or ∂.

$$
f: \mathbb{L}^{\epsilon_{1}} \times \cdots \times \mathbb{L}^{\epsilon_{n}} \rightarrow \mathbb{L}
$$

Example

The lattice operations \vee and \wedge are (1, 1)-operations.
The involution \neg is a ∂-operation.
The implication \rightarrow is a $(\partial, 1)$-operation.

Lattice expansions in this talk

To get a syntactic description of canonical inequalities, we focus on lattice expansions only with ϵ-additive operations and ϵ-multiplicative operations.

```
An \epsilon-additive operation f is a coordinate-wise join-preserving
function wrt the order type \epsilon. An \epsilon-multiplicative operation g}\mathrm{ is a
coordinate-wise meet-preserving function wrt the order type }\epsilon\mathrm{ .
The lattice operation V is (1,1)-additive.
The implication }->\mathrm{ is ( }\partial,1)\mathrm{ -multiplicative, because we have
    - (a\veeb) ->c= (a cc)^(b->c), and
    - a->(b\wedgec)=(a->b)\wedge(a->c).
```


LATTICE EXPANSIONS IN THIS TALK

To get a syntactic description of canonical inequalities, we focus on lattice expansions only with ϵ-additive operations and ϵ-multiplicative operations.
An ϵ-additive operation f is a coordinate-wise join-preserving function wrt the order type ϵ. An ϵ-multiplicative operation g is a coordinate-wise meet-preserving function wrt the order type ϵ.

The lattice operation \vee is $(1,1)$-additive.
The implication \rightarrow is ($\partial, 1$)-multiplicative, because we have

LATTICE EXPANSIONS IN THIS TALK

To get a syntactic description of canonical inequalities, we focus on lattice expansions only with ϵ-additive operations and ϵ-multiplicative operations.
An ϵ-additive operation f is a coordinate-wise join-preserving function wrt the order type ϵ. An ϵ-multiplicative operation g is a coordinate-wise meet-preserving function wrt the order type ϵ.

Example

The lattice operation \vee is $(1,1)$-additive.
The implication \rightarrow is $(\partial, 1)$-multiplicative, because we have

- $(a \vee b) \rightarrow c=(a \rightarrow c) \wedge(b \rightarrow c)$, and
- $a \rightarrow(b \wedge c)=(a \rightarrow b) \wedge(a \rightarrow c)$.

ExAmples of our Lattice Expansions

- Boolean algebras
- Modal algebras
- Heyting algebras
- Distributive modal algebras
- FL-algebras
- B.C口ゝ-algebras

To avoid a possible complication, we consider a lattice expansion $\mathbf{L}=\langle\mathbb{L}, I, r, c\rangle$ only, where $/$ is $(1,1)$-additive, r is
$(\partial, 1)$-multiplicative and c is a constant.

The CANONICAL EXTENSION

The canonical extension of $\mathbf{L}=\langle\mathbb{L}, l, r, c\rangle$ is $\overline{\mathbf{L}}=\left\langle\overline{\mathbb{L}},\left.\right|_{\uparrow}, r^{\downarrow}, c\right\rangle$, where

1. $\overline{\mathbb{L}}$ is the canonical extension of \mathbb{L},
2. I_{\uparrow}, a.k.a. I^{σ}, is approximated from below by filters (closed elements),
3. r^{\downarrow}, a.k.a. r^{π}, is approximated from above by ideals (open elements),
4. c is the constant.

The CANONICAL EXTENSION

The canonical extension of $\mathbf{L}=\langle\mathbb{L}, I, r, c\rangle$ is $\overline{\mathbf{L}}=\left\langle\overline{\mathbb{L}}, \Lambda_{\uparrow}, r^{\downarrow}, c\right\rangle$, where

1. $\overline{\mathbb{L}}$ is the canonical extension of \mathbb{L},
2. I_{\uparrow}, a.k.a. I^{σ}, is approximated from below by filters (closed elements),
3. r^{\downarrow}, a.k.a. r^{π}, is approximated from above by ideals (open elements),
4. c is the constant.

Approximation...? Let's recall the construction of canonical extensions. (on blackboards)

Canonical extensions of lattices

- $\lambda(\mathfrak{F}):=\{I \in \mathcal{I} \mid \forall F \in \mathfrak{F}$. $F \cap I \neq \emptyset\}$ approximated from below
- $v(\mathfrak{J}):=\{F \in \mathcal{F} \mid \forall I \in \mathfrak{I} . F \cap I \neq \emptyset\}$ approximated from above

Canonical extensions of lattices

- $\lambda(\mathfrak{F}):=\{I \in \mathcal{I} \mid \forall F \in \mathfrak{F} . F \cap I \neq \emptyset\}$
- $v(\mathfrak{I}):=\{F \in \mathcal{F} \mid \forall I \in \mathfrak{I} . F \cap I \neq \emptyset\}$

Canonical extensions of lattices

- $\lambda(\mathfrak{F}):=\{I \in \mathcal{I} \mid \forall F \in \mathfrak{F}$. $F \cap I \neq \emptyset\}$ approximated from below
- $v(\mathfrak{I}):=\{F \in \mathcal{F} \mid \forall I \in \mathfrak{I} . F \cap I \neq \emptyset\}$ approximated from above

CANONICAL EXTENSIONS OF ϵ-OPERATIONS

We extend I and r as partial functions onto the intermediate level.

1. I: $\mathcal{F} \times \mathcal{F} \rightarrow \mathcal{F}$,

$$
I(F, G):=\{a \in L \mid f \in F, g \in G . I(f, g) \leq a\}
$$

2. $I: \mathcal{I} \times \mathcal{I} \rightarrow \mathcal{I}, I(I, J):=\{a \in L \mid i \in I, j \in J . a \leq I(i, j)\}$
3. $r: \mathcal{I} \times \mathcal{F} \rightarrow \mathcal{F}, r(I, F):=\{a \in L \mid i \in I, f \in F . r(i, f) \leq a\}$
4. $r: \mathcal{F} \times \mathcal{I} \rightarrow \mathcal{I}, r(F, I):=\{a \in L \mid f \in F, i \in I . a \leq r(f, i)\}$

We define $1 \uparrow$ and r as approximations as follows.

Canonical extensions of ϵ-OPERATIONS

We extend I and r as partial functions onto the intermediate level.

1. I: $\mathcal{F} \times \mathcal{F} \rightarrow \mathcal{F}$,

$$
I(F, G):=\{a \in L \mid f \in F, g \in G . I(f, g) \leq a\}
$$

2. $I: \mathcal{I} \times \mathcal{I} \rightarrow \mathcal{I}, I(I, J):=\{a \in L \mid i \in I, j \in J . a \leq I(i, j)\}$
3. $r: \mathcal{I} \times \mathcal{F} \rightarrow \mathcal{F}, r(I, F):=\{a \in L \mid i \in I, f \in F . r(i, f) \leq a\}$
4. $r: \mathcal{F} \times \mathcal{I} \rightarrow \mathcal{I}, r(F, I):=\{a \in L \mid f \in F, i \in I . a \leq r(f, i)\}$

We define \digamma_{\uparrow} and r^{\downarrow} as approximations as follows.

1. $\Lambda_{\uparrow}(\alpha, \beta):=\lambda\left(\left\{I(F, G) \mid F \in \alpha^{\downarrow}, G \in \beta^{\downarrow}\right\}\right)$
2. $r^{\downarrow}(\alpha, \beta):=v\left(\left\{r(F, I) \mid F \in \alpha^{\downarrow}, I \in \beta_{\uparrow}\right\}\right)$

Canonical inequalities

Definition (Canonical inequality)
Let s, t be terms. An inequality $s \leq t$ is canonical on a lattice expansion \mathbf{L}, if

$$
\mathbf{L} \models s \leq t \Longleftrightarrow \overline{\mathbf{L}} \models s \leq t
$$

Theorem
An inequality $s \leq t$ is canonical, if it has consistent variable occurrence.

Consistent variable occurrence...? (on blackboards)

Canonical inequalities

Definition (Canonical inequality)
Let s, t be terms. An inequality $s \leq t$ is canonical on a lattice expansion \mathbf{L}, if

$$
\mathbf{L} \models s \leq t \Longleftrightarrow \overline{\mathbf{L}} \models s \leq t
$$

Theorem
An inequality $s \leq t$ is canonical, if it has consistent variable occurrence.

Consistent variable occurrence...? (on blackboards)

CANONICAL INEQUALITIES

Definition (Canonical inequality)

Let s, t be terms. An inequality $s \leq t$ is canonical on a lattice expansion \mathbf{L}, if

$$
\mathbf{L} \models s \leq t \Longleftrightarrow \overline{\mathbf{L}} \models s \leq t
$$

Theorem
An inequality $s \leq t$ is canonical, if it has consistent variable occurrence.

Consistent variable occurrence...? (on blackboards)

Consistent variable occurrence

Example
$I(r(x, I(y, z)), I(y, r(x, z)) \leq r(I(z, r(x, y)), r(I(y, x), z))$ has consistent variable occurrence.

Labelling and signing (on blackboards)

$$
\begin{aligned}
& t_{\cup}::=x|c| t_{\cup} \vee t_{\cup}\left|I\left(t_{\cup}, t_{\cup}\right)\right| t_{\wedge} \\
& t_{\cap}::=x|c| t_{\cap} \wedge t_{\cap}\left|r\left(t_{\cup}, t_{\cap}\right)\right| t_{\vee} \\
& t_{\vee}::=x|c| t_{\vee} \vee t_{\vee}\left|I\left(t_{\vee}, c\right)\right| I\left(c, t_{\vee}\right) \\
& t_{\wedge} \quad:=x|c| t_{\wedge} \wedge t_{\wedge}\left|r\left(t_{\vee}, c\right)\right| r\left(c, t_{\wedge}\right)
\end{aligned}
$$

Ghilardi \& Meloni's parallel computation

Their idea is simple.
Extend term functions on \mathbf{L} to the intermediate level.
But, how?
The intermediate level is two-sorted (filters and ideals).

Their answer is
Let's compute a term function t both as a filter and as an ideal, in parallel.

Ghilardi \& Meloni's parallel computation

Their idea is simple.
Extend term functions on \mathbf{L} to the intermediate level.
But, how?
The intermediate level is two-sorted (filters and ideals).

Their answer is
Let's compute a term function t both as a filter and as an ideal, in parallel.

Ghilardi \& MELONI's PARALLEL COMPUTATION

Their idea is simple.
Extend term functions on \mathbf{L} to the intermediate level.
But, how?
The intermediate level is two-sorted (filters and ideals).

Their answer is
Let's compute a term function t both as a filter and as an ideal, in parallel.

Ghilardi \& Meloni's parallel computation

Intuitively speaking,

$$
\begin{array}{ll}
t: & \mathcal{F} \times \cdots \times \mathcal{F} \rightarrow \mathcal{F} \\
t: & \mathcal{I} \times \cdots \times \mathcal{I} \rightarrow \mathcal{I}
\end{array}
$$

But, this is not really precise...

$$
\begin{array}{ll}
t: & (\mathcal{F} \| \mathcal{I}) \times \cdots \times(\mathcal{F} \| \mathcal{I}) \rightarrow \mathcal{F} \\
& t\left(F_{1}\left\|I_{1}, \ldots, F_{n}\right\| I_{n}\right) \\
t: & (\mathcal{I} \| \mathcal{F}) \times \cdots \times(\mathcal{I} \| \mathcal{F}) \rightarrow \mathcal{I} \\
& t\left(I_{1}\left\|F_{1}, \ldots, I_{n}\right\| F_{n}\right)
\end{array}
$$

Ghilardi \& Meloni's parallel computation

Intuitively speaking,

$$
\begin{array}{ll}
t: & \mathcal{F} \times \cdots \times \mathcal{F} \rightarrow \mathcal{F} \\
t: & \mathcal{I} \times \cdots \times \mathcal{I} \rightarrow \mathcal{I}
\end{array}
$$

But, this is not really precise...

$$
\begin{array}{ll}
t: & (\mathcal{F} \| \mathcal{I}) \times \cdots \times(\mathcal{F} \| \mathcal{I}) \rightarrow \mathcal{F} \\
& t\left(F_{1}\left\|I_{1}, \ldots, F_{n}\right\| I_{n}\right) \\
t: & (\mathcal{I} \| \mathcal{F}) \times \cdots \times(\mathcal{I} \| \mathcal{F}) \rightarrow \mathcal{I} \\
& t\left(I_{1}\left\|F_{1}, \ldots, I_{n}\right\| F_{n}\right)
\end{array}
$$

OUTCOMES OF THE PARALLEL COMPUTATION

Theorem (Rough basis)
Let t be each term. For all $\alpha_{1}, \ldots, \alpha_{n} \in \overline{\mathbb{L}}$, and all $F_{i} \leq \alpha_{i}$ and all $l_{i} \geq \alpha_{i}(1 \leq i \leq n)$, we have
$t\left(F_{1}\left\|I_{1}, \ldots, F_{n}\right\| I_{n}\right) \leq t\left(\alpha_{1}, \ldots, \alpha_{n}\right) \leq t\left(I_{1}\left\|F_{1}, \ldots, I_{n}\right\| F_{n}\right)$

A VERY SIMPLE EXAMPLE

The inequality $c \leq I(r(r(x, y), x), x)$ is canonical.

SKETCH.
For arbitrary $\alpha, \beta \in \mathbb{L}$, we want to show

$$
c \leq I(r(r(\alpha, \beta), \alpha), \alpha)
$$

It suffices to show $c \leq Y$ for any ideal $Y \geq I(r(r(\alpha, \beta), \alpha), \alpha)$. Thanks to the parallel computation, for all $F \leq \alpha$ and $I \geq \beta$,

$$
c \leq I(r(r(f, i), f), f) \leq a \leq Y
$$

A VERY SIMPLE EXAMPLE

The inequality $c \leq I(r(r(x, y), x), x)$ is canonical.

Sketch.
For arbitrary $\alpha, \beta \in \overline{\mathbb{L}}$, we want to show

$$
c \leq I(r(r(\alpha, \beta), \alpha), \alpha) .
$$

It suffices to show $c \leq Y$ for any ideal $Y \geq I(r(r(\alpha, \beta), \alpha), \alpha)$. Thanks to the parallel computation, for all $F \leq \alpha$ and $I \geq \beta$,

A VERY SIMPLE EXAMPLE

The inequality $c \leq I(r(r(x, y), x), x)$ is canonical.

Sketch.
For arbitrary $\alpha, \beta \in \overline{\mathbb{L}}$, we want to show

$$
c \leq I(r(r(\alpha, \beta), \alpha), \alpha) .
$$

It suffices to show $c \leq Y$ for any ideal $Y \geq I(r(r(\alpha, \beta), \alpha), \alpha)$.
Thanks to the parallel computation, for all $F \leq c$

$$
c \leq I(r(r(f, i), f), f) \leq a \leq Y
$$

A VERY SIMPLE EXAMPLE

The inequality $c \leq I(r(r(x, y), x), x)$ is canonical.

Sketch.
For arbitrary $\alpha, \beta \in \overline{\mathbb{L}}$, we want to show

$$
c \leq I(r(r(\alpha, \beta), \alpha), \alpha) .
$$

It suffices to show $c \leq Y$ for any ideal $Y \geq I(r(r(\alpha, \beta), \alpha), \alpha)$. Thanks to the parallel computation, for all $F \leq \alpha$ and $I \geq \beta$,

$$
c \leq I(r(r(f, i), f), f) I(r(r(F, I), F), F) \leq a \leq Y
$$

A VERY SIMPLE EXAMPLE

The inequality $c \leq I(r(r(x, y), x), x)$ is canonical.

Sketch.
For arbitrary $\alpha, \beta \in \overline{\mathbb{L}}$, we want to show

$$
c \leq I(r(r(\alpha, \beta), \alpha), \alpha) .
$$

It suffices to show $c \leq Y$ for any ideal $Y \geq I(r(r(\alpha, \beta), \alpha), \alpha)$. Thanks to the parallel computation, for all $F \leq \alpha$ and $I \geq \beta$,

$$
c \leq I(r(r(f, i), f), f) I(r(r(F, I), F), F) \leq a \leq Y
$$

A VERY SIMPLE EXAMPLE

The inequality $c \leq I(r(r(x, y), x), x)$ is canonical.

Sketch.
For arbitrary $\alpha, \beta \in \overline{\mathbb{L}}$, we want to show

$$
c \leq I(r(r(\alpha, \beta), \alpha), \alpha)
$$

It suffices to show $c \leq Y$ for any ideal $Y \geq I(r(r(\alpha, \beta), \alpha), \alpha)$. Thanks to the parallel computation, for all $F \leq \alpha$ and $I \geq \beta$,

$$
c \leq I(r(r(f, i), f), f) \leq a \leq Y
$$

A VERY SIMPLE EXAMPLE

The inequality $c \leq I(r(r(x, y), x), x)$ is canonical.

Sketch.
For arbitrary $\alpha, \beta \in \overline{\mathbb{L}}$, we want to show

$$
c \leq I(r(r(\alpha, \beta), \alpha), \alpha)
$$

It suffices to show $c \leq Y$ for any ideal $Y \geq I(r(r(\alpha, \beta), \alpha), \alpha)$. Thanks to the parallel computation, for all $F \leq \alpha$ and $I \geq \beta$,

$$
c \leq I(r(r(f, i), f), f) \leq a \leq Y
$$

Concluding Remarks

- A connection to Jónsson's work t^{σ} and t^{π}.

$$
t^{\sigma} \leq t \leq t^{\pi}
$$

