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Abstract10

Our concern is the problem of determining the data complexity of answering an ontology-mediated11

query (OMQ) given in linear temporal logic LTL over (Z, <) and deciding whether it is rewritable to an12

FO(<)-query, possibly with extra predicates. First, we observe that, in line with the circuit complexity13

and FO-definability of regular languages, OMQ answering in AC0, ACC0 and NC1 coincides14

with FO(<, ≡)-rewritability using unary predicates x ≡ 0 (mod n), FO(<, MOD)-rewritability, and15

FO(RPR)-rewritability using relational primitive recursion, respectively. We then show that deciding16

FO(<)-, FO(<, ≡)- and FO(<, MOD)-rewritability of LTL OMQs is ExpSpace-complete, and that17

these problems become PSpace-complete for OMQs with a linear Horn ontology and an atomic18

query, and also a positive query in the cases of FO(<)- and FO(<, ≡)-rewritability. Further, we19

consider FO(<)-rewritability of OMQs with a binary-clause ontology and identify OMQ classes, for20

which deciding it is PSpace-, Πp
2- and coNP-complete.21

2012 ACM Subject Classification Theory of computation → Logic22

Keywords and phrases FO-rewritability, linear temporal logic, ontology-mediated query, regular23

language, finite automaton24

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2325

Acknowledgements This work was supported by the UK EPSRC grant EP/S032282.26

1 Introduction27

Motivation. The problem we consider in this paper originates in the area of ontology-based28

data access (OBDA) to temporal data. The aim of the OBDA paradigm [44,61] and systems29

such as Mastro or Ontop1 is to facilitate management and integration of possibly incomplete30

and heterogeneous data by providing the user with a view of the data through the lens of a31

description logic (DL) ontology. Thus, the user can think of the data as a ‘virtual knowledge32

graph’ [62], A, whose labels—unary and binary predicates supplied by an ontology, O—are33

the only thing to know when formulating queries, κ. Ontology-mediated queries (OMQs)34

q = (O,κ) are supposed to be answered over A under the open world semantics (taking35

account of all models of O and A), which can be prohibitively complex. So the key to36

practical OBDA is ensuring first-order rewritability of q (aka boundedness in the datalog37

literature [1]), which reduces open-world reasoning to evaluating an FO-formula over A. The38

W3C standard ontology language OWL 2 QL for OBDA is based on the DL-Lite family of39

DL [3,19], which uniformly guarantees FO-rewritability of all OMQs with a conjunctive query.40

1 https://www.obdasystems.com, https://ontopic.biz
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Other ontology languages with this feature include various dialects of tgds; see, e.g., [8,18,22].41

However, by design such languages are rather inexpressive.42

Theory and practice of OBDA have revived the interest to the problem of deciding43

whether an OMQ given in some expressive language is FO-rewritable, which was thoroughly44

investigated in the 1980–90s for datalog queries; see, e.g., [2,24,42,53,55]. The data complexity45

and rewritability of OMQs in various DLs and disjunctive datalog have become an active46

research area in the past decade [15, 27, 31, 41], lying at the crossroads of logic, database47

theory, knowledge representation, circuit and descriptive complexity, and CSP.48

There have been numerous attempts to extend ontology and query languages with49

constructors capable of representing events over temporal data; see [6, 40] for surveys50

and [16,59,60] for more recent developments. However, so far the focus has been on the uniform51

complexity of reasoning with arbitrary ontologies and queries in a given language rather than52

on understanding the data complexity and FO-rewritability of individual temporal OMQs.53

On the other hand, the non-uniform analysis of OMQs in DLs or datalog mentioned above is54

not applicable to standard temporal logics interpreted over linearly-ordered structures.55

In this paper, we take a first step towards understanding the problem of FO-rewritability56

of OMQs over temporal data by focusing on the temporal dimension and considering OMQs57

given in linear temporal logic LTL interpreted over (Z, <).58

▶ Example 1. Let O be an LTL ontology with the following axioms (describing a system’s59

behaviour and) containing the temporal operators 2F/2P (always in the future/past), 3F /3P60

(sometime in the future/past) and ⃝
F /⃝

P (the next/previous minute):61

2P2F

(
Malfunction → 3F Fixed

)
, (1)62

2P2F

(
Fixed → ⃝

F InOperation
)
, (2)63

2P2F

(
Malfunction ∧ ⃝

P Malfunction ∧ ⃝2
P Malfunction → ¬⃝

F InOperation
)
. (3)64

65

We query temporal data, say66

A = {Malfunction(2),Malfunction(5),Malfunction(6),Fixed(6),Malfunction(7)}67

by means of LTL-formulas such as68

κ = 3P3F

(
Malfunction ∧

∨
1≤i≤5

⃝i
F (Fixed ∧

∨
1≤j≤5

¬⃝j
F InOperation)

)
69

asking whether there was a malfunction that was fixed in ≤ 5m but within the next 5m the70

equipment went out of operation again. The certain answer to the OMQ q = (O,κ) over A71

is yes because κ is true in all models of O and A. It is readily seen that the certain answer72

to q over any given data instance A′ in the signature {Malfunction,Fixed} can be computed73

by evaluating over A′ the following FO(<)-sentence, called an FO(<)-rewriting of q:74

∃x
[
Malfunction(x) ∧

∨
1≤i≤5

(
Fixed(x+ i) ∧

∨
1≤j≤5

∧
0≤k≤2

Malfunction(x+ i+ j − k)
)]
.75

Problem and related work. The problem we are interested in can be formulated in76

complexity-theoretic terms: given an LTL OMQ q, determine the data complexity of answer-77

ing q over any data instance A in a given signature Ξ. For simplicity’s sake, let us assume78

that q is Boolean (with a yes/no answer). Then the data instances A over which the answer79

to q is yes form a language L(q) over the alphabet 2Ξ. In fact, using the automata-theoretic80

view of LTL [58], one can show that L(q) is regular, and so can be decided in NC1 [9, 11].81
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class of OMQs FO(<) FO(<,≡), AC0 FO(<,MOD), ACC0

LTL⃝
horn OMAQs

ExpSpace ExpSpace ExpSpaceLTLkrom OMPEQs
LTL2⃝

bool OMQs
linear LTL⃝

horn OMAQ PSpace PSpace PSpace
linear LTL⃝

horn OMPQs ?
LTL⃝

krom OMAQs coNP
all in AC0 [7] –LTL⃝

core OMPEQs Πp
2

LTL⃝
core OMPQs PSpace

Table 1 Complexity of deciding FO-rewritability of LTL OMQs.

The circuit and descriptive complexity of regular languages was investigated in [10,51], which82

established an AC0/ACC0/NC1 trichotomy, gave algebraic characterisations of languages in83

these classes (implying that the trichotomy is decidable) and also in terms of extensions of FO.84

Namely, the languages in AC0 are definable by FO(<,≡)-sentences with unary predicates85

x ≡ 0 (mod n); those in ACC0 are definable by FO(<,MOD)-sentences with quantifiers86

∃nxψ(x) checking whether the number of positions satisfying ψ is divisible by n; and all87

regular languages are definable in FO(RPR) with relational primitive recursion [23].88

Thus, our problem can be equivalently formulated in logic terms: given an LTL OMQ q,89

decide whether L(q) is FO(<,≡)- or FO(<,MOD)-definable. In the OBDA context, we are90

also interested in FO(<)-definability (without any extra predicates, quantifiers or recursion),91

which has been thoroughly investigated in both automata theory and logic; see, e.g., [26]92

and references therein. In particular, deciding FO(<)-definability of regular languages is93

known to be PSpace-complete [14, 21, 49]. Note also that, by Kamp’s Theorem [35, 45],94

FO(<)-rewritability reduces answering LTL OMQs to model checking LTL-formulas.95

Our contribution. Let L ∈ {FO(<),FO(<,≡),FO(<,MOD)}. First, using results of [9, 10],96

we obtain criteria of L-definability of DFAs in terms of their transition monoids, which are97

then applied to show that deciding L-definability of the language of a given 2NFA can be98

done in PSpace. We also establish a matching lower bound for minimal DFAs. These results99

have been known for L = FO(<) and DFAs/NFAs [14,21,49]—but otherwise are novel.100

To investigate L-rewritability of LTL OMQs q = (O,κ), we follow the classification of [7],101

according to which the axioms of every LTL ontology O are given in the clausal form102

2P2F

(
C1 ∧ · · · ∧ Ck → Ck+1 ∨ · · · ∨ Ck+m

)
, (4)103

where the Ci are atoms, possibly prefixed by the temporal operators ⃝
F , ⃝

P , 2F , 2P . Given104

some o ∈ {2,⃝,2⃝} and c ∈ {bool, horn, krom, core}, we denote by LTLo
c the fragment of105

LTL with clauses of the form (4), where the Ci can only use the (future and past) operators106

indicated in o, and m ≤ 1 if c = horn; k+m ≤ 2 if c = krom; k+m ≤ 2 and m ≤ 1 if c = core;107

and arbitrary k, m if c = bool. If o is omitted, the Ci are atomic. An LTLo
horn-ontology O is108

linear if, in each of its axioms (4), at most one Ci, for 1 ≤ i ≤ k, can occur on the right-hand109

side of an axiom in O (is an IDB predicate, in datalog parlance). We distinguish between110

arbitrary LTLo
c OMQs q = (O,κ), where O is any LTLo

c ontology and κ any LTL-formula111

with ⃝-, 2- and 3-operators; positive OMQs (OMPQs), where κ is →,¬-free; existential112

OMPQs (OMPEQs) with 2-free κ; and atomic OMQs (OMAQs) with atomic κ.113

The main result of this paper is the tight complexity bounds on deciding L-rewritability114

(and so data complexity) of LTL OMQs in various classes defined above, which are summarised115

CVIT 2016
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in Table 1. The ExpSpace upper bound in the first stripe is shown using our L-definability116

criteria and exponential-size NFAs for LTL akin to those in [57]; in the proof of the matching117

lower bound, an exponential-size automaton is encoded in a polynomial-size ontology. If the118

ontology in an LTL⃝
horn OMAQ is linear, we show that its language (yes-data instances) can119

be captured by a polynomial-size 2NFA, which allows us to reduce the complexity of deciding120

L-rewritability to PSpace. However, for linear LTL⃝
horn OMPQs (with more expressive121

queries κ), the existence of polynomial-size 2NFAs remains open; instead, we show how the122

structure of the canonical (minimal) models for LTL⃝
horn-ontologies can be utilised to yield a123

PSpace algorithm. In the third stripe of the table, we deal with binary-clause ontologies.124

The coNP-completeness of deciding FO-rewritability of LTL⃝
krom OMAQs is established using125

unary NFAs and results from [50]. The Πp
2-completeness for LTL⃝

core OMPEQs (without ∨ in126

ontologies but with ∧, ∨, 3 in queries) and the PSpace-completeness for LTL⃝
core OMPQs127

(admitting 2 in queries, too) can be explained by the fact that the combined complexity128

of answering such OMPEQs and OMPQs is, respectively, NP- and PNP[O(logn)]-complete129

(like validity in Carnap’s modal logic [32]), rather than tractable as in the previous case.130

It might be of interest to compare the results in Table 1 with the complexity of deciding131

FO-rewritability (aka boundedness) of datalog queries, which is132

– undecidable for linear datalog queries with binary predicates and for ternary linear datalog133

queries with a single recursive rule [33,43];134

– 2NExpTime-complete for monadic disjunctive datalog queries [17,27];135

– 2ExpTime-complete for monadic datalog queries [12,24];136

– PSpace-complete for linear monadic programs [24,54];137

– NP-complete for linear monadic single rule programs [55].138

2 Preliminaries: LTL OMQs139

In our setting, the alphabet of linear temporal logic LTL comprises a set of atomic concepts140

Ai, i < ω. Basic temporal concepts, C, are defined by the grammar141

C ::= Ai | 2FC | 2PC | ⃝
FC | ⃝

PC142

with the temporal operators 2F /2P (always in the future/past) and ⃝
F /⃝

P (at the next/143

previous moment). A temporal ontology, O, is a finite set of axioms of the form144

C1 ∧ · · · ∧ Ck → Ck+1 ∨ · · · ∨ Ck+m, (5)145

where k,m ≥ 0, the Ci are basic temporal concepts, the empty ∧ is ⊤, and the empty ∨ is ⊥.146

Following the DL-Lite convention [3, 5], we classify ontologies by the shape of their axioms147

and the temporal operators that can occur in them. Suppose c ∈ {horn, krom, core, bool}148

and o ∈ {2,⃝,2⃝}. The axioms of an LTLo
c -ontology may only contain occurrences of the149

(future and past) temporal operators in o and satisfy the following restrictions on k and m150

in (5) indicated by c: horn requires m ≤ 1, krom requires k +m ≤ 2, core both k +m ≤ 2151

and m ≤ 1, while bool imposes no restrictions. For example, axiom (2) from Example 1 is152

allowed in all of these fragments, (3) is equivalent to a Horn axiom (with ⊥ on the right-hand153

side), and (1) can be expressed in Krom as explained in Remark 3 below. A basic concept154

is called an IDB (intensional database) concept in an ontology O if its atom occurs on the155

right-hand side of some axiom in O. The set of IDB atomic concepts in O is denoted by156

idb(O). An LTLo
horn-ontology is called linear if each of its axioms C1 ∧ · · · ∧ Ck → Ck+1157

contains at most one IDB concept Ci, for 1 ≤ i ≤ k.158
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A data instance—ABox in description logic parlance—is a finite set A of atoms Ai(ℓ),159

for ℓ ∈ Z, together with a finite interval tem(A) = [m,n] ⊆ Z, called the active domain of A,160

such that m ≤ ℓ ≤ n, for all Ai(ℓ) ∈ A. If A = ∅, then tem(A) may also be ∅. Otherwise,161

we assume (without loss of generality) that m = 0. If tem(A) is not specified explicitly,162

it is assumed to be either empty or [0, n], where n is the maximal timestamp in A. By a163

signature, Ξ, we mean any finite set of atomic concepts. An ABox A is said to be a Ξ-ABox164

if Ai(ℓ) ∈ A implies Ai ∈ Ξ.165

We query ABoxes by means of temporal concepts, κ, which are LTL-formulas built from166

the atoms Ai, Booleans ∧, ∨, ¬, temporal operators ⃝
F , 2F , 3F (eventually) and their167

past-time counterparts ⃝
P , 2P , 3P (previously). If κ does not contain ¬, we call it positive;168

if κ does not contain 2P and 2F either, we call positive existential.169

An interpretation is a structure I = (Z, AI
0 , A

I
1 , . . . ) with AI

i ⊆ Z, for every i < ω. The170

extension κI of a temporal concept κ in I is defined inductively as usual in LTL under the171

‘strict semantics’ [25, 30]:172

(⃝
Fκ)I =

{
n ∈ Z | n+ 1 ∈ κI }

,173

(2Fκ)I =
{
n ∈ Z | k ∈ κI , for all k > n

}
,174

(3Fκ)I =
{
n ∈ Z | there is k > n with k ∈ κI }

,175
176

and symmetrically for the past-time operators. We regard I, n |= κ as synonymous to n ∈ κI .177

We say that an axiom (5) is true in I if CI
1 ∩ · · · ∩ CI

k ⊆ CI
k+1 ∪ · · · ∪ CI

k+m, that is, if it178

holds at every moment of time; cf. (4). An interpretation I is a model of O if all axioms of179

O are true in I; it is a model of A if Ai(ℓ) ∈ A implies ℓ ∈ AI
i .180

An LTLo
c ontology-mediated query (OMQ) is a pair of the form q = (O,κ), where O is an181

LTLo
c ontology and κ a temporal concept. If κ is positive, we call q a positive OMQ (OMPQ,182

for short), if κ is positive existential, we call q a positive existential OMQ (OMPEQ), and if183

κ is an atomic concept, we call q atomic (OMAQ). The set of atomic concepts occurring in184

q is denoted by sig(q).185

We can treat q as a Boolean OMQ, which returns a yes/no answer, or as a specific186

OMQ, which returns timestamps from the ABox in question assigned to the free variable,187

say x, in the standard FO-translation of κ. In the latter case, we write q(x) = (O,κ(x)).188

More precisely, a certain answer to a Boolean OMQ q = (O,κ) over an ABox A is yes if,189

for every model I of O and A, there is k ∈ Z such that k ∈ κI , in which case we write190

(O,A) |= ∃xκ(x). If (O,A) ̸|= ∃xκ(x), the certain answer to q over A is no. We write191

(O,A) |= κ(k), for k ∈ Z, if k ∈ κI in all models I of O and A. A certain answer to a specific192

OMQ q(x) = (O,κ(x)) over A is any k ∈ tem(A) with (O,A) |= κ(k). By the evaluation (or193

answering) problems for q or q(x) we understand the decision problem ‘(O,A) |=? ∃xκ(x)’194

or ‘(O,A) |=? κ(k)’ with input A or, respectively, A and k ∈ tem(A). We say that q or q(x)195

is in a complexity class C if the corresponding evaluation problem is in C.196

▶ Example 2. (i) Suppose O1 = {A → 2FB, 2FB → C} and q1 = (O1, C ∧D). The certain197

answer to q1 over A1 = {D(0), B(1), A(1)} is yes, and no over A2 = {D(0), A(1)}. The only198

answer to q1(x) =
(
O1, (C ∧D)(x)

)
over A1 is 0.199

(ii) Let O2 = { ⃝
PA → B, ⃝

PB → A, A∧B → ⊥ }. The certain answer to q2 = (O2, C)200

over A1 = {A(0)} is no, and yes over A2 = {A(0), A(1)}. There are no certain answers to201

q2(x) = (O1, C(x)) over A1, while over A2 the answers are 0 and 1.202

(iii) Consider now the ontology

O3 = {⃝
PBk ∧A0 → Bk, ⃝

PB1−k ∧A1 → Bk | k = 0, 1}.

CVIT 2016
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For any word e = e1 . . . en ∈ {0, 1}n, let Ae = {B0(0)} ∪ {Aei(i) | 0 < i ≤ n} ∪ {E(n)}. The203

answer to q3 = (O3, B0 ∧ E) over the ABox Ae is yes iff the number of 1s in e is even.204

(iv) Let O4 = {A → ⃝
FB} and q4 = (O4, B). Then, the answer to q4 over A = {A(0)}205

is yes; however, there are no certain answers to q4(x) = (O4, B(x)) over A.206

(v) Let O5 = {A → B∨⃝
FB}. The certain answer to q5 = (O5, B) over A = {A(0), C(1)}207

is yes; however, there are no certain answers to q5(x) over A.208

▶ Remark 3. As follows from [4, 28], if arbitrary LTL-formulas are used as axioms of an209

ontology O, then one can construct an LTL2⃝
bool ontology O′ that is a model conservative210

extension of O. For example, let O′ be the result of replacing (1) in O from Example 1 by211

Malfunction ∧ 2FX → ⊥ and ⊤ → X ∨ Fixed, for a fresh concept name X. Then the OMQ212

q = (O,κ) is equivalent to q′ = (O′,κ) in the sense that q and q′ have the same certain213

answers over any sig(q)-ABox.214

Let L be a class of FO-formulas that can be interpreted over finite linear orders. A215

Boolean OMQ q is L-rewritable over Ξ-ABoxes if there is an L-sentence Q such that, for any216

Ξ-ABox A, the certain answer to q over A is yes iff SA |= Q. Here, SA is a structure with217

domain tem(A) ordered by <, in which SA |= Ai(ℓ) iff Ai(ℓ) ∈ A. A specific OMQ q(x) is218

L-rewritable over Ξ-ABoxes if there is an L-formula Q(x) with one free variable x such that,219

for any Ξ-ABox A, k is a certain answer to q(x) over A iff SA |= Q(k). The sentence Q and220

the formula Q(x) are called L-rewritings of the OMQs q and q(x), respectively.221

We require four languages L for rewriting LTL OMQs, which are listed below in order of222

increasing expressive power:223

FO(<): (monadic) first-order formulas with the built-in predicate < for order;224

FO(<, ≡): FO(<)-formulas with unary (numerical) predicates x ≡ 0 (mod N), for N > 1;225

FO(<, MOD): FO(<)-formulas with quantifiers ∃Nx, for N > 1, that are defined by taking226

SA |= ∃Nxψ(x) iff the cardinality of {n ∈ tem(A) | SA |= ψ(n)} is divisible by N (note227

that x ≡ 0 (mod N) is definable as ∃Ny (y < x));228

FO(RPR): FO(<) with relational primitive recursion [23].229

As well-known, FO(<,≡) is strictly more expressive than FO(<) and strictly less expressive230

than FO(<,MOD), which is illustrated by the examples below.231

▶ Example 4. (i) An FO(<)-rewriting of q1(x) is232

Q1(x) = D(x) ∧ [C(x) ∨ ∃y (A(y) ∧ ∀z ((x < z ≤ y) → B(z)))],233

∃xQ1(x) is an FO(<)-rewriting of q1.234

(ii) An FO(<,≡)-rewriting of q2(x) is235

236

Q2(x) = C(x) ∨ ∃x, y [(A(x) ∧A(y) ∧ odd(x, y)) ∨237

(B(x) ∧ B(y) ∧ odd(x, y)) ∨ (A(x) ∧ B(y) ∧ ¬odd(x, y))],238
239

where odd(x, y) =
(
x ≡ 0 (mod 2) ↔ y ̸≡ 0 (mod 2)

)
implies that |x − y| is odd, and an240

FO(<,≡)-rewriting of q2 is ∃xQ2(x). Recall that odd is not expressible in FO(<) [39].241

(iii) The OMQ q3 is not rewritable to an FO-formula with any numeric predicates as242

PARITY is not in AC0 [29]; the following sentence is an FO(<,MOD)-rewriting of q3:243

244

Q3 = ∃x, y
[
E(x) ∧ (y ≤ x) ∧ ∀z

(
(y < z ≤ x) → A0(z) ∨A1(z)

)
∧245 (

(B0(y) ∧ ∃2z ((y < z ≤ x) ∧ A1(z))) ∨ (B1(y) ∧ ¬∃2z ((y < z ≤ x) ∧ A1(z)))
)]
.246

247

(iv) An FO(<)-rewriting of q4(x) is B(x) ∨ A(x − 1); an FO(<)-rewriting of q4 is248

Q4 = ∃x (A(x) ∨B(x)).249

(v) The same Q4 is an FO(<)-rewriting of q5, and B(x) is an FO(<)-rewriting of q5(x).250
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It has been shown in [7] that all (Boolean and specific) LTL OMQs are FO(RPR)-rewritable251

and that specific OMPQs can be classified syntactically by their rewritability type as shown252

in Table 2. This means, for example, that all LTL2⃝
core OMPQs are FO(<,≡)-rewritable, with253

some of them being not FO(<)-rewritable. It is to be noted that FO(<,MOD)-rewritable254

OMQs such as q3 in Example 2 are not captured by these syntactic classes.255

OMAQs OMPQs
c LTL2

c LTL⃝
c and LTL2⃝

c LTL2
c LTL⃝

c and LTL2⃝
c

bool

FO(<)

FO(RPR) FO(RPR) FO(RPR)krom FO(<,≡)

horn FO(RPR) FO(<)
core FO(<,≡) FO(<,≡)

Table 2 Rewritability of specific LTL OMQs.

In this paper, our aim is to understand how (complex it is) to decide the optimal type of256

FO-rewritability for a given LTL OMQ q over Ξ-ABoxes. We begin by observing an intimate257

connection between L-rewritability of OMQs and L-definability of certain regular languages.258

A language L over an alphabet Σ is L-definable if there is an L-sentence φ in the259

signature Σ, whose symbols are treated as unary predicates, such that, for any w ∈ Σ∗, we260

have w = a0 . . . an ∈ L iff Sw |= φ, where Sw is a structure with domain {0, . . . , n}, in261

which Sw |= a(i) iff a = ai, for i ≤ n.262

For any OMQ q and Ξ ⊆ sig(q), we regard ΣΞ = 2Ξ as an alphabet. Any Ξ-ABox A can263

be given as a ΣΞ-word wA = a0 . . . an with ai = {A | A(i) ∈ A}. Conversely, any ΣΞ-word264

w = a0 . . . an gives the ABox Aw with tem(Aw) = [0, n] and A(i) ∈ Aw iff A ∈ ai. The word265

∅ corresponds to A∅ = ∅ with tem(A∅) = [0, 0].266

The language LΞ(q), for a Boolean q, is defined to be the set of ΣΞ-words wA such that267

the certain answer to q over A is yes. For a specific q(x), we take ΓΞ = ΣΞ ∪Σ′
Ξ with a disjoint268

copy Σ′
Ξ of ΣΞ and represent a pair (A, i) with a Ξ-ABox A and i ∈ tem(A) as a ΓΞ-word269

wA,i = a0 . . . a
′
i . . . an, where a′

i = {A | A(i) ∈ A} ∈ Σ′
Ξ and aj = {A | A(j) ∈ A} ∈ ΣΞ, for270

j ̸= i. The language LΞ(q(x)) is the set of ΓΞ-words wA,i such that i is a certain answer to271

q(x) over A. The following result is proved in a way similar to [58, Theorem 2.1].272

▶ Proposition 5. Both LΞ(q) and LΞ(q(x)) are regular languages.273

Proof. Let subq (or subO) be the set of temporal concepts in q (respectively, O) and their274

negations. A type for q (respectively, O) is any maximal subset τ ⊆ subq (respectively,275

τ ⊆ subO) consistent with O. Let T be the set of all types for q. Define an NFA A over ΣΞ276

whose language L(A) is Σ∗
Ξ \ LΞ(q). Its states are Q¬κ = {τ ∈ T | ¬κ ∈ τ}. The transition277

relation →a, for a ∈ ΣΞ, is defined by taking τ1 →a τ2 if the following conditions hold:278

(a) a ⊆ τ2,279

(b) ⃝
FC ∈ τ1 iff C ∈ τ2,280

(c) 2FC ∈ τ1 iff C ∈ τ2 and 2FC ∈ τ2,281

(d) 3FC ∈ τ1 iff C ∈ τ2 or 3FC ∈ τ2,282

and symmetrically for the corresponding past-time operators. The initial (accepting) states283

are those τ ∈ Q¬κ, for which τ ∪ {2P ¬κ} (respectively, τ ∪ {2F ¬κ}) is consistent with O.284

Then w ∈ L(A) iff (O,Aw) ̸|= ∃xκ(x), for any w ∈ Σ∗
Ξ. Indeed, if w ∈ L(A), we take an285
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accepting run τ0, . . . , τn of A on w, a model I− of O with I−, k |= τ0 ∪ {2P ¬κ}, a model I+
286

of O with I+, l |= τn ∪ {2F ¬κ}, for some k, l ∈ Z, and construct a new interpretation I that287

has the types τ0, . . . , τn in the interval [0, n], before (after) which it has the same types as in288

I− in (−∞, k) (respectively, I+ on (l,∞)). One can readily check that I is a model of O289

and Aw such that κI = ∅, and so (O,Aw) ̸|= ∃xκ(x). The opposite direction is obvious.290

To show that LΞ(q(x)) is regular, we observe first that the language L over ΓΞ comprising291

words of the form wA,i, for all non-empty Ξ-Aboxes A and i ∈ tem(A), is regular. Thus, it292

suffices to define an NFA A over ΓΞ such that LΞ(q(x)) = L \ L(A). The set of states in A293

is T ∪ T ′ with a disjoint copy T ′ of T . The set of initial states is T and the set of accepting294

states is T ′. The transition relation →a, for a ∈ ΣΞ, is defined by taking τ1 →a τ2 if either295

τ1, τ2 ∈ T or τ1, τ2 ∈ T ′ and conditions (a)–(d) are satisfied; for a′ ∈ Σ′
Ξ, we set τ1 →a′ τ2 if296

τ1 ∈ T , τ2 ∈ T ′, ¬κ ∈ τ2, a′ ⊆ τ2, and (b)–(d) hold. It is easy to see that, for any Ξ-ABox297

A and i ∈ tem(A), there exists a model I of O and A with i ̸∈ κI iff wA,i ∈ L(A). ❑298

Note that the number of states in the NFAs in the proof above is 2O(|q|)) and that they299

can be constructed in exponential time in the size |q| of q as LTL-satisfiability is in PSpace.300

In Section 5, we show that, in fact, the type of L-rewritability of q coincides with the301

type of L-definability of the regular languages LΞ(q) and LΞ(q(x)). But before that, we302

revisit the well-known problem of deciding L-definability of regular languages.303

3 Preliminaries: Monoids, Groups and Automata304

In this section, we first briefly remind the reader of the basic algebraic and automata-theoretic305

notions required in the remainder of the paper, and then prove the criteria of L-definability306

of regular languages we need to obtain our complexity results.307

3.1 Semigroups, monoids, groups308

A semigroup is a structure S = (S, ·) where · is an associative binary operation. Given309

s, s′ ∈ S and n > 0, we write sn for s· . . . ·s n-times, and often write ss′ for s · s′. An310

element s in a semigroup S is called idempotent if s2 = s. An element e in a semigroup S is311

called an identity element if e · x = x · e = x for every x ∈ S. (It is easy to see that such312

an e, if exists, must be unique.) The identity element is clearly idempotent. A monoid is a313

semigroup that has an identity element. (We don’t put it to the signature.) For any element314

s in a monoid, we let s0 = e. A monoid S = (S, ·) is called a group if for every x ∈ S there315

is some x− ∈ S such that x · x− = x− · x = e for the identity element e of S. Then x− is316

called the inverse of x. (It is easy to see that in a group every element has a unique inverse.)317

A group is called trivial if it has only one element, and nontrivial otherwise.318

Given two groups G = (G, ·) and G′ = (G′, ·′), a map h : G → G′ is a group homomorphism319

from G to G′ if for all g1, g2 ∈ G, h(g1 · g2) = h(g1) ·′ h(g2). (It is easy to see that any320

group homomorphism maps the identity element of G to the identity element of G′ and321

preserves all inverses as well. Also, the set {h(g) | g ∈ G} is closed under ·′ and so it is a322

group, called the image of G under h.) G is a subgroup of G′ if G ⊆ G′ and the identity323

map idG is a group homomorphism. Given X ⊆ G, the subgroup of G generated by X is the324

smallest subgroup of G containing all elements from X. If G is finite then every element of325

the subgroup generated by X can be expressed as a combination (under ·) of elements of X.326

Given a finite group G with identity element e, the order oG(g) of an element g in G is327

the smallest positive number n such that gn = e. It is easy to see that oG(g) exists, and for328
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any k, if gk = e then oG(g) divides k. Also, oG(g) = oG(g−) holds for every g. Also329

if g is a nonidentity element in a group G, then gk ̸= gk+1 for any k. (6)330

Given two semigroups S = (S, ·), S′ = (S′, ·′), we say that S′ is a subsemigroup of S if331

S′ ⊆ S and ·′ is the restriction of · to S′. Given a monoid M = (M, ·) and a set S ⊆ M , we332

say that S contains the group G = (G, ·′), if G ⊆ S and G is a subsemigroup of M . (We do333

not require that the identity element of M is in G, even if it is in S.) If S = M then we334

also say that M contains the group G, or G is in M . We call a monoid M aperiodic if it335

does not contain any nontrivial groups.336

Suppose S = (S, ·) is a finite semigroup, and take any s ∈ S. Then, by the pi-337

geonhole principle, there exist i, j ≥ 1 such that i + j ≤ |S| + 1 and si = si+j . Take338

the minimal such numbers, that is, let is, js ≥ 1 be such that is + js ≤ |S| + 1 and339

sis = sis+js but sis , sis+1, . . . , sis+js−1 are all different. Then clearly Gs = (Gs, ·), where340

Gs = {sis , sis+1, . . . , sis+js−1}, is a subsemigroup of S. It is easy to see that there is some341

m ≥ 1 such that is ≤ m · js < is + js ≤ |S| + 1, and so sm·js is idempotent. Thus, for every342

element s in a semigroup S, we have the following:343

there is n ≥ 1 such that sn is idempotent; (7)344

Gs is a group in S (isomorphic to the cyclic group Zjs); (8)345

Gs is nontrivial iff sn ̸= sn+1 for any n. (9)346
347

One can apply these to a particular setting. Let δ be a Q → Q function for some nonempty348

finite set Q. For any p ∈ Q, the subset {δk(p) | k < ω} with the obvious multiplication is a349

finite semigroup, and so we have:350

For every p ∈ Q there is np ≥ 1 such that δnp
(
δnp(p)

)
= δnp(p). (10)351

There exist q ∈ Q and n ≥ 1 such that q = δn(q). (11)352

For every q ∈ Q, if q = δk(q) for some k ≥ 1,353

then there is 1 ≤ n ≤ |Q| with q = δn(q). (12)354
355

We will also consider solvable groups and not solvable (unsolvable) groups, see [46] for a356

definition. We will only use the following facts about them:357

– Any homomorphic image of a solvable group is solvable.358

– The criterion of Kaplan and Levy [36] (generalising Thompson’s [52, Cor.3]): A finite359

group G is unsolvable iff it contains three elements a, b, c, such that oG(a) = 2, oG(b)360

is an odd prime, oG(c) > 1 and coprime to both 2 and oG(b), and abc is the identity361

element of G.362

A one-to-one and onto function on a finite set S is called a permutation on S. The order363

of a permutation δ is its order in the group of all permutations on S (whose operation is364

composition, and its identity element is the identity permutation idS). We will use the usual365

cycle notation for permutations.366

Now suppose that G is a monoid of Q → Q functions for some nonempty finite set Q.367

Let S = {q ∈ Q | eG(q) = q}, where eG the identity element in G. For every function δ in G,368

let δ↾S denote the restriction of δ to S. Then we have the following:369

G is a group iff δ↾S is a permutation on S, for every δ in G. (13)370

If G is a group and δ is a nonindentity element in it, then δ↾S ̸= idS ,371

and the order of the permutation δ↾S divides oG(δ). (14)372
373
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3.2 Automata: DFAs, NFAs, 2NFAs374

A two-way nondeterministic finite automaton is a quintuple A = (Q,Σ, δ, Q0, F ) that consists375

of an alphabet Σ, a finite set of states Q with a subset Q0 ̸= ∅ of initial states and a376

subset F of accepting states, and a transition function δ : Q× Σ → 2Q×{−1,0,1} indicating377

the next state and whether the head should move left (−1), right (1), or stay put (0). If378

Q0 = {q0} and |δ(q, a)| = 1, for all q ∈ Q and a ∈ Σ, then A is deterministic, in which case379

we write A = (Q,Σ, δ, q0, F ). If δ(q, a) ⊆ Q × {1}, for all q ∈ Q and a ∈ Σ, then A is a380

one-way automaton, and we write δ : Q× Σ → 2Q. As usual, DFA and NFA refer to one-way381

deterministic and non-deterministic finite automata, respectively, while 2DFA and 2NFA to382

the corresponding two-way automata. Given a 2NFA A, we write q →a,d q
′ if (q′, d) ∈ δ(q, a);383

given an NFA A, we write q →a q
′ if q′ ∈ δ(q, a). A run of a 2NFA A is a word in (Q× N)∗.384

A run (q0, i0), . . . , (qm, im) is a run of A on a word w = a0 . . . an ∈ Σ∗ if q0 ∈ Q0, i0 = 0385

and there exist d0, . . . , dm−1 ∈ {−1, 0, 1} such that qj →aj ,dj
qj+1 and ij+1 = ij + dj for all386

j, 0 ≤ j < m. The run is accepting if qm ∈ F , im = n+ 1. A accepts w ∈ Σ∗ if there is an387

accepting run of A on w; the language L(A) of A is the set of all words accepted by A.388

Given an NFA A, states q, q′ ∈ Q, and w = a0 . . . an ∈ Σ∗, we write q →w q′ if either389

w = ε and q′ = q or there is a run of A on w that starts with (q0, 0) and ends with (q′, n+ 1).390

We say that a state q ∈ Q is reachable if q′ →w q, for some q′ ∈ Q0 and w ∈ Σ∗.391

Given a DFA A = (Q,Σ, δ, q0, F ), for any word w ∈ Σ∗, we define a function δw : Q → Q392

by taking δw(q) = q′ iff q →w q′. We define an equivalence relation ∼ on the set Qr ⊆ Q393

of reachable states by taking q ∼ q′ iff for every w ∈ Σ∗ we have δw(q) ∈ F iff δw(q′) ∈ F .394

We denote the ∼-class of q by q/∼, and let X/∼ = {q/∼ | q ∈ X} for any X ⊆ Qr. Define395

δ̃w : Qr/∼ → Qr/∼ by taking δ̃w(q/∼) = δw(q)/∼. Then
(
Qr/∼,Σ, δ̃, q0/∼, (F ∩Qr)/∼

)
is the396

minimal DFA whose language coincides with the language of A. Given a regular language L,397

we denote by AL the minimal DFA whose language is L.398

The transition monoid of a DFA A takes the form M(A) =
(
{δw | w ∈ Σ∗}, ·

)
, where · is399

the composition ◦ of functions, that is, δv · δw = δw ◦ δv = δvw, for any v, w. The syntactic400

monoid M(L) of L is the transition monoid M(AL) of AL. The map ηL from Σ∗ to the401

domain of M(L) defined by taking ηL(w) = δ̃w is called the syntactic morphism of L. Given402

a set W ⊆ Σ∗, we set ηL(W ) = {ηL(w) | w ∈ W}. We call ηL quasi-aperiodic if ηL(Σt) is403

aperiodic for every t < ω.404

A language L over Σ is L-definable if there is an L-sentence φ in the signature Σ, whose405

symbols are treated as unary predicates, such that, for any w ∈ Σ∗, we have w = a0 . . . an ∈ L406

iff Sw |= φ, where Sw is an FO-structure with domain {0, . . . , n} ordered by <, in which407

Sw |= a(i) iff a = ai, for 0 ≤ i ≤ n.408

Table 3 summarises the known results that connect definability of a regular language409

L with properties of the syntactic monoid M(L) and syntactic morphism ηL (see [10] for410

details) and with its circuit complexity under a reasonable binary encoding of L’s alphabet411

(see, e.g., [14, Lemma 2.1]) and the assumption that ACC0 ̸= NC1. We also remind the412

reader that a regular language is FO(<)-definable iff it is star-free (see [51] and references413

therein) and that AC0 ⫋ ACC0 ⊆ NC1 (see, e.g., [34, 51]).414

From now on, we assume that L ∈ {FO(<),FO(<,≡),FO(<,MOD)}.415

We conclude the preliminaries by proving algebraic criteria of L-definability of regular416

languages that are used in what follows.417
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definability of L algebraic characterisation of L circuit complexity
FO(<) M(L) is aperiodic in AC0

FO(<,≡) ηL is quasi-aperiodic
FO(<,MOD) all groups in M(L) are solvable in ACC0

FO(RPR) arbitrary M(L) in NC1

not in FO(<,MOD) M(L) contains an unsolvable group NC1-hard
Table 3 Definability, algebraic characterisations, and circuit complexity of regular languages.

3.3 Criteria of L-definability418

Our aim now is to prove Theorem 6 below. Note that the equivalence (i), which follows419

from [47], was used to show that deciding FO(<)-definability is in PSpace [49]. Criteria (ii)420

and (iii) appear to be new.421

▶ Theorem 6. For any DFA A = (Q,Σ, δ, q0, F ), the following criteria hold:422

(i) [47, 49] L(A) is not FO(<)-definable iff A contains a nontrivial cycle, that is, there exist423

a word u ∈ Σ∗, a state q ∈ Qr, and a number k ≤ |Q| such that q ̸∼ δu(q) and q = δuk (q);424

(ii) L(A) is not FO(<,≡)-definable iff there exist words u, v ∈ Σ∗, a state q ∈ Qr, and a425

number k ≤ |Q| such that q ̸∼ δu(q), q = δuk (q), |v| = |u|, and δui(q) = δuiv(q), for every426

i < k;427

(iii) L(A) is not FO(<,MOD)-definable iff there exist words u, v ∈ Σ∗, a state q ∈ Qr and428

numbers k, l ≤ |Q| such that k is an odd prime, l > 1 and coprime to both 2 and k,429

q ̸∼ δu(q), q ̸∼ δv(q), q ̸∼ δuv(q), and δx(q) ∼ δxu2(q) ∼ δxvk (q) ∼ δx(uv)l(q), for all430

x ∈ {u, v}∗.431

Proof. Throughout, we consider the minimal DFA AL(A), with transition function δ̃.432

(i)(⇒): Suppose that G is a nontrivial group in M(AL(A)). Let u ∈ Σ∗ be such that δ̃u is a433

nonidentity element in G. We claim that there is p ∈ Qr such that δ̃un(p/∼) ̸= δ̃un+1(p/∼) for434

any n > 0. Indeed, otherwise for every p ∈ Qr there is np > 0 with δ̃unp (p/∼) = δ̃unp+1(p/∼).435

Let n = max{np | p ∈ Qr}. Then δ̃un = δ̃un+1 , contradicting (6).436

By (10), there is m ≥ 1 with δ̃u2m(p/∼) = δ̃um(p/∼). Let s/∼ = δ̃um(p/∼). Then437

s/∼ = δ̃um(s/∼), and so the restriction of δum to the subset s/∼ of Qr is an s/∼ → s/∼438

function. By (11), there exist q ∈ s/∼ and n ≥ 1 such that (δum)n(q) = q. Thus, δumn(q) = q,439

and so by (12), there is k ≤ |Q| with δuk (q) = q. As s/∼ ̸= δ̃u(s/∼), we also have q ̸∼ δu(q),440

as required.441

(i)(⇐): Suppose the condition holds for A. Then there exists u ∈ Σ∗, q ∈ Qr/∼, and442

k < ω are such that q ̸= δ̃u(q) and q = δ̃uk (q). Then δ̃un ̸= δ̃un+1 for any n > 0. Indeed,443

otherwise we have some n > 0 with δ̃un(q) = δ̃un+1(q). Let i, j be such that n = i · k + j and444

j < k. Then445

q = δ̃uk (q) = δ̃u(i+1)k (q) = δ̃unuk−j (q) = δ̃un+1uk−j (q) = δ̃u(i+1)ku(q) = δ̃u(q).446

So by (8) and (9), the group Gδ̃u
is a nontrivial group in M(L).447

(ii)(⇒): Suppose that G is a nontrivial group in ηL(Σt) for some t < ω. Let u ∈ Σt be448

such that δ̃u is a nonidentity element in G. As is shown in the proof of the ⇒ direction449

of (i), there exist s ∈ Qr and m ≥ 1 such that s/∼ ≠ δ̃u(s/∼) and s/∼ = δ̃um(s/∼). Now450

let v ∈ Σt be such that δ̃v is the identity element in G, and consider δv. By (7), there is451

ℓ ≥ 1 such that δvℓ is idempotent. Then δv2ℓ−1v2ℓ = δv2ℓ−1 . Thus, if we let ū = uv2ℓ−1 and452
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v̄ = v2ℓ, then |ū| = |v̄| and δūi = δūiv̄ for any i < ω. Also, δ̃ui = δ̃ūi for every i ≥ 1, and so453

the restriction of δūm to s/∼ is an s/∼ → s/∼ function. By (11), there exist q ∈ s/∼ and454

n ≥ 1 such that (δūm)n(q) = q. Thus, δūmn(q) = q, and so by (12), there is some k ≤ |Q|455

with δūk (q) = q. As s/∼ ̸= δ̃u(s/∼) = δ̃ū(s/∼), we also have q ̸∼ δū(q), as required.456

(ii)(⇐): Suppose the condition holds for A. Then there exist u, v ∈ Σ∗, q ∈ Qr/∼,457

and k < ω are such that q ̸= δ̃u(q), q = δ̃uk (q), |v| = |u|, and δ̃ui(q) = δ̃uiv(q), for458

every i < k. As M(AL(A)) is finite, it has finitely many subsets. So there exists i, j ≥ 1459

such that ηL(Σi|u|) = ηL(Σ(i+j)|u|). Let z be a multiple of j with i ≤ z < i + j. Then460

ηL(Σz|u|) = ηL(Σ(z|u|)2), and so ηL(Σz|u|) is closed under the composition of functions (that461

is, the semigroup operation of M(AL(A))). Let w = uvz−1 and consider the group Gδ̃w
462

(defined above (7)–(9)). Then Gδ̃w
⊆ ηL(Σz|u|). We claim that Gδ̃w

is nontrivial. Indeed, on463

the one hand, δ̃w(q) = δ̃uvz−1(q) = δ̃u(q) ̸= q. On the other hand, δ̃wk (q) = δ̃uk (q) = q. As is464

shown in the proof of the ⇐ direction of (i), Gδ̃w
is nontrivial.465

(iii)(⇒): Suppose G is an unsolvable group in M(AL(A)). By the Kaplan–Levy criterion,466

G contains three functions a, b, c, such that oG(a) = 2, oG(b) is an odd prime, oG(c) > 1 and467

coprime to both 2 and oG(b), and c◦b◦a = eG for the identity element eG of G. Let u, v ∈ Σ∗
468

be such that a = δ̃u, b = δ̃v and c = (δ̃uv)−, and let k = oG(δ̃v) and r = oG(c) = oG(δ̃uv).469

Then r > 1 and coprime to both 2 and k. Let S =
{
p ∈ Qr/∼ | eG(p) = p

}
. As δ̃x is G for470

every x ∈ {u, v}∗, we have eG ◦ δ̃x = δ̃x. Thus,471

δ̃xu2(q) = δ̃u2
(
δ̃x(q)

)
= eG

(
δ̃x(q)

)
= (eG ◦ δ̃x)(q) = δ̃x(q), and472

δ̃xvk (q) = δ̃vk

(
δ̃x(q)

)
= eG

(
δ̃x(q)

)
= (eG ◦ δ̃x)(q) = δ̃x(q), for every q ∈ S.473

474

Then by (13)„ each of δ̃u↾S , δ̃v↾S and δ̃uv↾S is a permutation on S. By (14), the order of475

δ̃u↾S is 2, the order of δ̃v↾S is k, and the order l of δ̃uv↾S is a > 1 divisor of r, and so it is476

coprime to both 2 and k. Also, we have k, l ≤ |S| ≤ |Q|. Further, for every x, if q is in S477

then δ̃x(q) ∈ S as well. So we have478

δ̃x(uv)l(q) = δ̃(uv)l

(
δ̃x(q)

)
= (δ̃uv↾S)l

(
δ̃x(q)

)
= idS

(
δ̃x(q)

)
= δ̃x(q), for every q ∈ S.479

It remains to show that there is some q ∈ S such that q ̸= δ̃u(q), q ̸= δ̃u(q), and q ̸= δ̃uv(q).480

We will use that the length of any cycle in a permutation divides the order of the permutation.481

First, we show there is q ∈ S with q ̸= δ̃u(q) and q ̸= δ̃u(q). Indeed, as δ̃u↾S ̸= idS , there482

is q ∈ S such that δ̃u(q) = q′ ̸= q. As the order of δ̃u↾S is 2, δ̃u(q′) = q. If both δ̃v(q) = q483

and δ̃v(q′) = q′ were the case, then δ̃uv(q) = q′ and δ̃uv(q′) = q would hold, and so (qq′)484

would be a cycle in δ̃uv↾S , contradicting that l is coprime to 2. So take some q ∈ S such that485

δ̃u(q) = q′ ̸= q and δ̃v(q) ̸= q. If δ̃v(q′) ̸= q then δ̃uv(q) ̸= q, and so q is a good choice. So486

suppose that δ̃v(q′) = q, and let q′′ = δ̃v(q). Then q′′ ̸= q′, as k is odd. Thus, δ̃uv(q′) ̸= q′,487

and so q′ is a good choice.488

(iii)(⇐): Suppose u, v ∈ Σ∗, q ∈ Qr, and k, l < ω are satisfying the conditions. For every489

x ∈ {u, v}∗, we define an equivalence relation ≈x on Qr/∼ by taking p ≈x p
′ iff δ̃x(p) = δ̃x(p′).490

Then we clearly have that ≈x⊆≈xy, for all x, y ∈ {u, v}∗. As Q is finite, there is z ∈ {u, v}∗
491

such that ≈z=≈zy for all y ∈ {u, v}∗. Take such a z. By (7), δ̃nz is idempotent for some492

n ≥ 1. We let w = zn. Then δ̃w is idempotent and we also have that493

≈w = ≈wy for all y ∈ {u, v}∗. (15)494

Now let G{u,v} =
{
δ̃wxw | x ∈ {u, v}∗}

. Then G{u,v} is closed under composition. Let G{u,v}495

be the subsemigroup of M(AL(A)) with universe G{u,v}. Then δ̃w = δ̃wεw is an identity496
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element in G{u,v}. Let S = {p ∈ Qr/∼ | δ̃w(p) = p}. We show that497

for every δ̃ in G{u,v}, δ̃↾S is a permutation on S, (16)498

and so G{u,v} is a group by (13). Indeed, take some x ∈ {u, v}∗. As δ̃w
(
δ̃wxw(p)

)
=499

δ̃wxww(p) = δ̃wxw(p) for any p ∈ Qr/∼, δ̃wxw↾S is an S → S function. Also, if p, p′ ∈ S and500

δ̃wxw(p) = δ̃wxw(p′) then p ≈wxw p
′. Thus, by (15), p ≈w p

′, that is, p = δ̃w(p) = δ̃w(p′) = p′,501

proving (16).502

We show that the group G{u,v} is unsolvable by finding an unsolvable homomorphic image503

of it. To this end, let R =
{
p ∈ Qr/∼ | p = δ̃x(q) for some x ∈ {u, v}∗}

. We claim that for504

every δ̃ in G{u,v}, δ̃↾R is a permutation on R, and so the function h mapping every δ̃ to δ̃↾R505

is a group homomorphism from G{u,v} to the group of all permutations on R. Indeed, by506

(16), it is enough to show that R ⊆ S. To this end, we let w = zm . . . z1, where w = z1 . . . zm507

for some zi ∈ {u, v}, u = u and v = vk−1. By using that δ̃x(q) = δ̃x(u)2(q) = δ̃x(v)k (q) for all508

x ∈ {u, v}∗, we obtain that509

510

δ̃yww(q) = δ̃zm−1...z1

(
δ̃yz1...zmzm

(q)
)

= δ̃zm−1...z1

(
δ̃yz1...zm−1(q)

)
= . . .511

· · · = δ̃z1

(
δ̃yz1(q)

)
= δ̃xz1z1(q) = δ̃y(q), for all y ∈ {u, v}∗. (17)512

513

Now suppose that p ∈ R, that is, p = δ̃x(q) for some x ∈ {u, v}∗. Then, by (17),514

δ̃w(p) = δ̃w
(
δ̃x(q)

)
= δ̃xw(q) = δ̃xwww(q) = δ̃xww(q) = δ̃x(q) = p,515

and so p ∈ S, as required.516

Now let G be the image of G{u,v} under h. We prove that G is unsolvable by finding517

three elements a, b, c in it such that oG(a) = 2, oG(b) = k, oG(c) is coprime to both 2 and518

oG(b), and c ◦ b ◦ a = idR (the identity element of G). So let a = h(δ̃wuw), b = h(δ̃wvw), and519

c = h(δ̃wuvw)−. Observe that for every x ∈ {u, v}∗, h(δ̃wxw) = δ̃x↾R, and so c ◦ b ◦ a = idR.520

Also, for any δ̃x(q) ∈ R, a2(
δ̃x(q)

)
= (δ̃u↾R)2(

δ̃x(q)
)

= δ̃xu2(q) = δ̃x(q) by our assumption,521

and so a2 = idR. On the other hand, q ∈ R as δ̃ε(q) = q, and idR(q) = q ̸= δ̃u(q) by our522

assumption, so a ̸= idR. As oG(a) divides 2, oG(a) = 2 follows. Similarly, we can show that523

oG(b) = k (using that δ̃xvk (q) = δ̃x(q) for every x ∈ {u, v}∗, and u ̸= δ̃v(q)). Finally (using524

that δ̃x(uv)l(q) = δ̃x(q) for every x ∈ {u, v}∗, and u ̸= δ̃uv(q)), we obtain that h(δ̃wuvw)l = idR525

and h(δ̃wuvw) ̸= idR. Therefore, it follows that oG(c) = oG
(
h(δ̃wuvw)−)

= oG
(
h(δ̃wuvw)

)
> 1526

and divides l, and so coprime to both 2 and k, as required. ❑527

4 Deciding FO-definability of regular languages528

We now settle the complexity of deciding L-definability of the language of a given (minimal)529

DFA or 2NFA, for each L in question. Deciding FO(<)-definability for the languages of530

DFAs and NFAs is known to be PSpace-complete [14, 21, 49]. For other FO-languages L,531

the problem has been recorded as decidable in [10] but the exact complexity seems to remain532

open. We start with the lower bound.533

4.1 PSpace-hardness534

We require three families of DFAs Bp
<, Bp

≡ and Bp
MOD, where p > 5 is a prime number with535

p ̸≡ ±1 (mod 10). The first one, shown below for p = 7,536
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s0start

s1

s2

s3

s4

s5

s6

a

a
a

a

a
a

a

B7
<

537

is defined in general as Bp
< =

(
{si | i < p}, {a}, δB

p
< , s0, {s0}

)
, where δB

p
<

a (si) = sj whenever538

i, j < p and j ≡ i + 1 (mod p). It is straightforward to check that the language L(Bp
<)539

consists of all words of the form (ap)∗, Bp
< is the minimal DFA for this language, and the540

syntactic monoid M(Bp
<) is the cyclic group of order p (generated by the permutation δB

p
<

a ).541

The second family of DFAs, shown below for p = 7,542

s0start

s1

s2

s3

s4

s5

s6

a

♮

a
♮ a

♮

a

♮

a

♮a

♮
a

♮

B7
≡543

is defined in general as Bp
≡ =

(
{si | i < p}, {a, ♮}, δB

p
≡ , s0, {s0}

)
, where δB

p
≡

♮ (si) = si and544

δ
Bp

≡
a (si) = sj whenever i, j < p and j ≡ i+ 1 (mod p). It is straightforward to check that545

the language L(Bp
≡) consists of all words of a’s and ♮’s whose number of a’s is divisible by546

p, Bp
≡ is the minimal DFA for this language, and the syntactic monoid M(Bp

≡) is also the547

cyclic group of order p (generated by the permutation δ
Bp

≡
a ).548

Finally, the DFAs in the third family, depicted below for p = 7,549

s0start

s1

s2

s3

s4

s5

s6
s7

a

♮

a

♮

a

♮

a

♮

a

♮

a

♮
a

♮

a

♮

B7
MOD550

is defined in general as Bp
MOD =

(
{si | i ≤ p}, {a, ♮}, δB

p
MOD , s0, {s0}

)
, where551
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– δ
Bp

MOD
a (sp) = sp, and δ

Bp
MOD

a (si) = sj whenever i, j < p and j ≡ i+ 1 (mod p);552

– δ
Bp

MOD
♮ (s0) = sp, δ

Bp
MOD

♮ (sp) = s0, and δ
Bp

MOD
♮ (si) = sj whenever 1 ≤ i, j < p and i · j ≡553

p− 1 (mod p), that is, j = −1/i in the finite field Fp.554

It is straightforward to check that Bp
MOD is the minimal DFA for its language, and the555

syntactic monoid M(Bp
MOD) is the permutation group generated by the permutations δB

p
MOD

a556

and δ
Bp

MOD
♮ .557

▶ Lemma 7. For any prime p > 5 with p ̸≡ ±1 (mod 10), the group M(Bp
MOD) is unsolvable,558

but all of its proper subgroups are solvable.559

Proof. It is straightforward to check that the order of the permutation δB
p
MOD

♮ is 2, the order of560

δ
Bp

MOD
a is p, while the order of the inverse of δB

p
MOD

♮a is the same as the order of δB
p
MOD

♮a , which is 3.561

So M(Bp
MOD) is unsolvable, for any prime p, by the Kaplan–Levy criterion. In order to show562

that all proper subgroups of M(Bp
MOD) are solvable, we show that M(Bp

MOD) is a subgroup of563

the projective special linear group PSL2(p). If p is a prime with p > 5 and p ̸≡ ±1 (mod 10),564

then all proper subgroups of PSL2(p) are solvable; see, e.g., [37, Theorem 2.1]. (So M(Bp
MOD)565

is in fact isomorphic to the unsolvable group PSL2(p).)566

Consider the set P = {0, 1, . . . , p − 1,∞} of all points of the projective line over the567

field Fp. By identifying si with i for i < p, and sp with ∞, we may regard the elements of568

M(Bp
MOD) as P → P functions. The group PSL2(p) consists of all P → P functions of the569

form570

571

i 7→ w · i+ x

y · i+ z
, where w · z − x · y = 1, with the field arithmetic of Fp being extended572

by, for any i ∈ P , i+ ∞ = ∞, 0 · ∞ = 1 and i · ∞ = ∞ for i ̸= 0.573
574

Then it is easy to check that the two generators of M(Bp
MOD) are in PSL2(p): take w = 1,575

x = 1, y = 0, z = 1 for δB
p
MOD

a , and w = 0, x = 1, y = p− 1, z = 0 for δB
p
MOD

♮ . ❑576

We are now in a position to establish the PSpace-lower bound:577

▶ Theorem 8. For L ∈ {FO(<),FO(<,≡),FO(<,MOD)}, deciding L-definability of the578

language L(A) of a given minimal DFA A is PSpace-hard.579

Proof. That deciding FO(<)-definability of L(A) is PSpace-hard was established by Cho580

and Huynh [21]. We modify and generalise their construction to cover FO(<,≡)- and581

FO(<,MOD)-definability, too.582

Suppose M is a deterministic Turing machine that decides a language using at most583

N = PM (n) tape cells on any input of size n, for some polynomial PM . Given such584

an M and some input x, our aim is to define three minimal DFAs whose languages are,585

respectively, FO(<)-, FO(<,≡)-, and FO(<,MOD)-definable iff M rejects x, and whose sizes586

are polynomial in N and the size |M | of M .587

To this end, suppose that M is of the form M = (Q,Γ, γ, b, q0, qacc) with a set Q of588

states, tape alphabet Γ with b for blank, transition function γ, initial state q0 and accepting589

state qacc. Without loss of generality we assume that M erases the tape before accepting590

and has its head at the left-most cell in an accepting configuration, and if M does not591

accept the input, it runs forever. Given an input word x = x1 . . . xn over Γ, we represent592

configurations c of the computation of M on x by the N -long word written on the tape (with593

sufficiently many blanks at the end) in which the symbol y in the active cell is replaced by594

the pair (q, y) for the current state q. The accepting computation of M on x is encoded by595
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a word ♯ c1 ♯ c2 ♯ . . . ♯ ck−1 ♯ ck♭ over the alphabet Σ = Γ ∪ (Q× Γ) ∪ {♯, ♭}, with c1, c2, . . . , ck596

being the subsequent configurations. In particular, c1 is the initial configuration on x (so it597

is of the form (q0, x1)x2 . . . xnb . . . b), and ck is the accepting configuration (so it is of the598

form (qacc, b)b . . . b). As usual for this representation of computations, we may regard γ as a599

partial function from
(
Γ ∪ (Q× Γ)

)3 to Γ ∪ (Q× Γ).600

Let pM ,x = p be the first prime such that p ≥ N + 2 and p ̸≡ ±1 (mod 10). By [13,601

Corollary 1.6], p is polynomial in N . Our first aim is to construct a p + 1-long sequence602

Ai of pairwise disjoint minimal DFAs over the alphabet Σ. Each Ai has size polynomial in603

N and |M |, and it checks certain properties of an accepting computation on x such that604

M accepts x iff the intersection of the L(Ai) is not empty and consists of the single word605

encoding the accepting computation on x.606

The DFA A0 checks that an input word starts with the initial configuration on x and607

ends with the accepting configuration:608

q0
0start q1

0 q2
0 . . . qn+1

0
. . . qN+1

0

q0
1q1

1q2
1. . .qN+1

1f0

♯ (q0, x1) x2 xn b b

y ̸= ♯, ♭

♯

(qacc, b) ♯

y ̸= (qacc, b), ♯

bb♭

609

When 1 ≤ i ≤ N , the DFA Ai checks, for all j, whether γ(σji−1, σ
j
i , σ

j
i+1) = σj+1

i , where610

σkl denotes the lth symbol of ck.611

qi0start qi−1
0

. . .

q1
0 . . .

q0
a

. . .

q1
ab

. . .

q2
zabc

q1
dz

. . .
q3
z

p3
z

p4
z . . .

. . .

qN−1
z

pNzq0
dz

fi

y

y

y a

b

c

y

y

y

y

y

y

♯

♯

♯
d

z

♭

♭

♭

612

Formally δi consists of the following transitions for a, b, c ∈ Σ′ \ {♭} and b, c ̸= ♯:613

(qj0, b, q
j−1
0 ), (q1

0 , a, q
0
a), (q0

a, b, q
1
ab), (q1

ab, c, q
2
zabc

), (q1
ab, ♯, p

2
zab♯

),614

(qja, b, qj+1
a ), for a ̸= ♯ and 1 < j < N − 1,615

(qja, ♯, pj+1
a ), for a ̸= ♯ and 1 < j < N − 1,616

(pja, b, pj+1
a ), for a ̸= ♯, and 1 < j < N − 1,617

(pNa , b, q0
ba), (qNa , ♯, q0

♯a), (q0
ab, b, q

1
ab),618

(qja, ♭, fi), 1 ≤ j ≤ N,619

(q1
ab, ♭, fi).620

621

Here, zabc = γ(a, b, c) for a, b, c ∈ Γ ∪ (Q× Γ).622

Finally, if N + 1 ≤ i ≤ p then Ai accepts all words with a single occurrence of ♭, which is623

the input’s last character:624
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qi0start fi

a ̸= ♭

♭

625

Note that Ap−1 = Ap as p ≥ N + 2. It is not hard to check that each of the Ai is a minimal626

DFA that does not contain nontrivial cycles and the following holds:627

▶ Lemma 9. M accepts x iff
⋂p
i=0 L(Ai) ̸= ∅, in which case this language consists of a628

single word that encodes the accepting computation of M on x.629

Now take some fresh symbols a1, a2. We define three automata A<, A≡, AMOD over630

the same tape alphabet Σ+ = Σ ∪ {a1, a2, ♮} by taking, respectively, Bp
<, Bp

≡, Bp
MOD and631

replacing each transition si →a sj in them by a fresh copy of Ai, for i ≤ p, as shown in the632

picture below, where qi0 is the initial state of Ai.633

si sj ; si qi0 fi sj

Ai

a a1 a2

634

We make each of A<, A≡, AMOD deterministic by adding a trash state tr looping on itself635

with every y ∈ Σ+, and then adding the missing transitions leading to tr. It follows from the636

construction that A<, A≡, and AMOD are minimal DFAs, and they are of size polynomial in637

N and |M |.638

▶ Lemma 10. (i) L(A<) is FO(<)-definable iff
⋂p
i=0 L(Ai) = ∅.639

(ii) L(A≡) is FO(<,≡)-definable iff
⋂p
i=0 L(Ai) = ∅.640

(iii) L(AMOD) is FO(<,MOD)-definable iff
⋂p
i=0 L(Ai) = ∅.641

Proof. In both directions we use that each of the DFAs A<,A≡,AMOD is minimal, and642

so we can replace ∼ by = in the conditions of Theorem 6. For the (⇒) directions, given643

some w ∈
⋂p
i=0 L(Ai), in each case we show how to satisfy the corresponding condition of644

Theorem 6:645

(i): Take u = a1wa2, q = s0, and k = p.646

(ii): Take u = a1wa2, v = ♮|u|, q = s0, and k = p.647

(iii): Take u = ♮, v = a1wa2, q = s0, k = p and l = 3.648

For the (⇐) directions, in each case we show that the corresponding condition of Theorem 6649

implies that
⋂p
i=0 L(Ai) is not empty. To this end, we define a Σ∗

+ → {a, ♮}∗ homomorphism650

by taking h(♮) = ♮, h(a1) = a, and h(b) = ε for all other b ∈ Σ+.651

(i) and (ii): Let ◦ ∈ {<,≡} and suppose q is a state in Ap◦ and u′ ∈ Σ∗
+ such that652

q ̸= δ
Ap

◦
u′ (q) and q = δ

Ap
◦

(u′)k (q) for some k. Let S = {s0, s1, . . . , sp−1}. We claim that there653

exist s ∈ S and u ∈ Σ∗
+ such that654

s ̸= δA
p
◦

u (s), (18)655

δA
p
◦

x (s) ∈ S, for every x ∈ {u}∗. (19)656
657

Indeed, observe that none of the states along the cyclic q →(u′)k q path Π in Ap◦ is tr. So658

there is some state along Π that is in S, as otherwise one of the Ai would contain a nontrivial659

cycle. Therefore, u′ must be of the form w♮na1w
′ for some w ∈ Σ∗, n < ω and w′ ∈ Σ∗

+. It660

is easy to see that s = δ
Ap

◦
(u′)k−1w

(q) and u = ♮na1w
′w is as required in (18) and (19).661
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As M(Bp
◦) is a finite group, the set

{
δ
Bp

◦
h(x) | x ∈ {u}∗}

forms a subgroup G in it662

(the subgroup generated by δ
Bp

◦
h(u)). We show that G is nontrivial by finding a nontrivial663

homomorphic image of it. To this end, (19) implies that, for every x ∈ {u}∗, the restriction664

δ
Ap

◦
x ↾S′ of δA

p
◦

x to the set S′ =
{
δ
Ap

◦
y (s) | y ∈ {u}∗}

is an S′ → S′ function and δA
p
◦

x ↾S′= δ
Bp

◦
h(x)↾S′ .665

As M(Bp
◦) is a group of permutations on a set containing S′, δB

p
◦

h(x)↾S′ is a permutation of666

S′, for every x ∈ {u}∗. Thus,
{
δ
Bp

◦
h(x)↾S′ | x ∈ {u}∗}

is a homomorphic image of G that is667

nontrivial by (18).668

Finally, as G is a nontrivial subgroup of the cyclic group M(Bp
◦) of order p and p is669

a prime, it follows that G = M(Bp
◦). Therefore, there is x ∈ {u}∗ with δ

Bp
◦

h(x) = δ
Bp

◦
a (a670

permutation containing the p-cycle (s0s1 . . . sp−1) ‘around’ all elements of S), and so S′ = S671

and x = ♮na1wa2w
′ for some n < ω, w ∈ Σ∗, and w′ ∈ Σ∗

+. As n = 0 when ◦ =< and δA
p
≡

♮n (s)672

for every s ∈ S, S′ = S implies that w ∈
⋂p−1
i=0 L(Ai) =

⋂p
i=0 L(Ai).673

(iii): Suppose q is a state in ApMOD and u′, v′ ∈ Σ∗
+ such that q ̸= δ

Ap
MOD

u′ (q), q ̸= δ
Ap

MOD
v′ (q),674

q ̸= δ
Ap

MOD
u′v′ (q), and δ

Ap
MOD

x (q) = δ
Ap

MOD
x(u′)2(q) = δ

Ap
MOD

x(v′)k (q) = δ
Ap

MOD
x(u′v′)l(q) for some odd prime k and675

number l that is coprime to both 2 and k. Let S = {s0, s1, . . . , sp}. We claim that there676

exist s ∈ S and u, v ∈ Σ∗
+ such that677

s ̸= δ
Ap

MOD
u (s), s ̸= δ

Ap
MOD

v (s), s ̸= δ
Ap

MOD
uv (s), (20)678

δ
Ap

MOD
x (s) ∈ S, for every x ∈ {u, v}∗, (21)679

δ
Ap

MOD
x (s) = δ

Ap
MOD

xu2 (s) = δ
Ap

MOD
xvk (s) = δ

Ap
MOD

x(uv)l(s), for every x ∈ {u, v}∗. (22)680
681

Indeed, by an argument similar to the one in the proof of (i) and (ii) above, we must have682

u′ = wu♮
na1w

′
u and v′ = wv♮

ma1w
′
v for some wu, wv ∈ Σ∗, n,m < ω and w′

u, w
′
v ∈ Σ∗

+. For683

every x ∈ {u, v}∗, as both δ
Ap

MOD
xwu (q) and δ

Ap
MOD

xwv (q) are in S, they must be the same state.684

Using this it is not hard to see that s = δ
Ap

MOD
u′wu

(q), u = ♮na1w
′
uwu and v = ♮ma1w

′
vwv are as685

required in (20)–(22).686

As M(Bp
MOD) is a finite group, the set

{
δ
Bp

MOD
h(x) | x ∈ {u, v}∗}

forms a subgroup G in it687

(the subgroup generated by δ
Bp

MOD
h(u) and δ

Bp
MOD

h(v) ). We show that G is unsolvable by finding688

an unsolvable homomorphic image of it. To this end, we let S′ =
{
δ
Ap

MOD
y (s) | y ∈ {u, v}∗}

.689

Then (21) implies that S′ ⊆ S and690

δ
Bp

MOD
h(x) (s′) = δ

Ap
MOD

x (s′) ∈ S′, for all s′ ∈ S and x ∈ {u, v}∗, (23)691

and so the restriction δA
p
MOD

x ↾S′ of δA
p
MOD

x to S′ is an S′ → S′ function and δA
p
MOD

x ↾S′= δ
Bp

MOD
h(x) ↾S′ .692

As M(Bp
MOD) is a group of permutations on a set containing S′, δB

p
MOD

h(x) ↾S′ is a permutation of693

S′, for every x ∈ {u, v}∗. Thus,
{
δ
Bp

MOD
h(x) ↾S′ | x ∈ {u, v}∗}

is a homomorphic image of G that694

is unsolvable by the Kaplan–Levy criterion: By (20), (22), and 2 and k being primes, the695

order of the permutation δB
p
MOD

h(u) ↾S′ is 2, the order of δB
p
MOD

h(v) ↾S′ is k, and the order of δB
p
MOD

h(uv)↾S′696

(which is the same as the order of its inverse) is a > 1 divisor of l, and so coprime to both 2697

and k.698

As G is an unsolvable subgroup of M(Bp
MOD), it follows from Lemma 7 that G =699

M(Bp
MOD), and so {u, v}∗ ̸⊆ ♮∗. We claim that S′ = S also follows. Indeed, let x ∈ {u, v}∗

700

be such that δB
p
MOD

h(x) = δ
Bp

MOD
a . As |S′| ≥ 2 by (20), s ∈ {s0, . . . , sp−1} must hold, and so701
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{s0, . . . , sp−1} ⊆ S′ follows by (23). As there is y ∈ {u, v}∗ with δB
p
MOD

h(y) = δ
Bp

MOD
♮ , sp ∈ S′ also702

follows by (23).703

Finally, as {u, v}∗ ̸⊆ ♮∗, there is x ∈ {u, v}∗ of the form ♮na1wa2w
′ for some n < ω,704

w ∈ Σ and w′ ∈ Σ∗
+. As S′ = S, δB

p
MOD

x (si) ∈ S for every i ≤ p, and so w ∈
⋂p
i=0 L(Ai). ❑705

As A<, A≡, and AMOD are all of size polynomial in N and |M |, Theorem 8 clearly follows706

from Lemmas 9 and 10. ❑707

4.2 Deciding L-definability of 2NFAs in PSpace708

In this section, we give a PSpace-algorithm deciding whether the language of any given709

2NFA is L-definable, for L ∈ {FO(<),FO(<,≡),FO(<,MOD)}, which matches the lower710

bound established in the previous section.711

Let A = (Q,Σ, δ, Q0, F ) be a 2NFA. Following [20], for any w ∈ Σ+, we introduce712

four binary relations blr(w), brl(w), brr(w), and bll(w) on Q describing the left-to-right,713

right-to-left, right-to-right, and left-to-left behaviour of A on w. Namely,714

– (q, q′) ∈ blr(w) if there is a run of A on w from (q, 0) to (q′, |w|);715

– (q, q′) ∈ brr(w) if there is a run of A on w from (q, |w| − 1) to (q′, |w|);716

– (q, q′) ∈ brl(w) if, for some a ∈ Σ, there is a run on aw from (q, |aw| − 1) to (q′, 0) such717

that no (q′′, 0) occurs in it before (q′, 0);718

– (q, q′) ∈ bll(w) if, for some a ∈ Σ, there is a run on aw from (q, 1) to (q′, 0) such that no719

(q′′, 0) occurs in it before (q′, 0).720

For w = ε (the empty word), we define the bij(w) as the identity relation on Q.721

Let b = (blr, brl, brr, bll), where the bij are the behaviours of A on some w ∈ Σ∗, in which722

case we can also write b(w), and let b′ = b(w′), for some w′ ∈ Σ∗. We define the composition723

b · b′ = b′′ with components b′′
ij as follows. Let X be the transitive closure of b′

ll ◦ brr, and724

let Y be the transitive closure of brr ◦ b′
ll. Then, we set:725

b′′
lr = blr ◦ b′

lr ∪ blr ◦X ◦ b′
lr,726

b′′
rl = b′

rl ◦ brl ∪ b′
rl ◦ Y ◦ brl,727

b′′
rr = b′

rr ∪ b′
rl ◦ Y ◦ brr ◦ b′

lr,728

b′′
ll = bll ∪ blr ◦X ◦ b′

ll ◦ brl.729
730

One can readily check that b′′ = b(ww′).731

We define the DFA A′ = (Q′,Σ, δ′, q′
0, F

′) by taking732

Q′ =
{

(Blr, Brr) | Blr ⊆ Q0 ×Q, Brr ⊆ Q×Q
}
,733

q′
0 =

({
(q, q) | q ∈ Q0

}
, ∅

)
,734

F ′ =
{

(Blr, Brr) | (q0, q) ∈ Blr, for some q0 ∈ Q0 and q ∈ F
}
,735

for any a ∈ Σ, δ′
a

(
(Blr, Brr)

)
= (B′

lr, B
′
rr), where B′

lr = Blr ◦X(a) ◦ blr(a),736

B′
rr = Brr ∪ brl(a) ◦ Y (a) ◦ blr(a), and X(a) and Y (a) are the737

reflexive transitive closures of, respectively, bll(a) ◦Brr and Brr ◦ bll(a).738
739

It is not hard to see that740

for any w ∈ Σ∗, δ′
w

(
(Blr, Brr)

)
= (B′

lr, B
′
rr) iff B′

lr = Blr ◦X(w) ◦ blr(w),741

B′
rr = Brr ∪ brl(w) ◦ Y (w) ◦ blr(w), where X(w) and Y (w) are the742

reflexive transitive closures of, respectively, bll(w) ◦Brr and Brr ◦ bll(w). (24)743
744
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Also, it can be shown in a way similar to [48,56] that745

L(A) = L(A′). (25)746

▶ Theorem 11. For L ∈ {FO(<),FO(<,≡),FO(<,MOD)}, deciding L-definability of the747

language L(A) of any given 2NFA A can be done in PSpace.748

Proof. Let A′ be the DFA defined above for the given 2NFA A. First, we consider FO(<)-749

definability. By Theorem 6 (i) and (25), L(A) is not FO(<)-definable iff there exist a word750

u ∈ Σ∗, a reachable state q ∈ Q′, and a number k ≤ |Q′| such that q ̸∼ δ′
u(q) and q = δ′

uk (q).751

We guess the required k in binary, q, and some quadruple of binary relations b(u) on Q.752

Clearly, they all can be stored in polynomial space in the size of A. To check that our guesses753

are correct, we first check that the quadruple b(u) indeed corresponds to some u ∈ Σ∗. This754

is done by guessing a sequence b0, . . . , bn of pairwise distinct quadruples of binary relations755

on Q such that b0 = b(u0) and bi+1 = bi · b(ui+1), for some characters u0, . . . , un ∈ Σ.756

(Any sequence with a subsequence starting after bi and ending with bi+m, for some i and757

m such that bi = bi+m, is equivalent, in the context of this proof, to the sequence with758

such a subsequence removed.) Therefore, we can assume that n ≤ 2O(|Q|), and so n can be759

guessed in binary and stored in PSpace. So, the stage of our algorithm that checks that b(u)760

corresponds to some u ∈ Σ∗ makes n iterations and continues to the next stage if bn = b(u)761

or terminates with an answer no otherwise. Now, using b(u), we are able to compute b(uk)762

by means of a sequence b0, . . . , bk, where b0 = b(u) and bi+1 = bi · b(u). With b(u) (b(uk)),763

we are able to compute δ′
u(q) (respectively, δ′

uk (q)) in PSpace using (24). If δ′
uk (q) ̸= q, the764

algorithm terminates with an answer no. Otherwise, in the final stage of the algorithm, we765

check that δ′
u(q) ̸∼ q. This is done by guessing v ∈ Σ∗, such that δ′

v(q) = q1, δ′
v

(
δ′
u(q)

)
= q2,766

and q1 ∈ F ′ iff q1 ̸∈ F ′. We guess such a v (if exists) in the form of b(v) using an algorithm767

analogous to that for guessing u above.768

We next consider FO(<,≡)-definability. By Theorem 6 (ii) and (25), L(A) is not769

FO(<,≡)-definable iff there there exist words u, v ∈ Σ∗, a reachable state q ∈ Q′, and770

a number k ≤ |Q′| such that q ̸∼ δ′
u(q), q = δ′

uk (q), |v| = |u|, and δ′
ui(q) = δ′

uiv(q), for771

every i < k. We outline how to modify the algorithm for FO(<)-definability above to check772

FO(<,≡)-definability. First, we need to guess and check v in the form of b(v) in parallel773

with guessing and checking u in the form of b(u), making sure that |v| = |u|. For that, we774

guess a sequence of pairwise distinct pairs (b0, b′
0), . . . , (bn, b′

n) such that the bi are as above,775

b′
0 = b(v0) and b′

i+1 = b′
i · b(vi+1), for some v0, . . . , vn ∈ Σ. (Any such sequence of pairs with776

a subsequence starting after (bi, b′
i) and ending with (bi+m, b′

i+m), for some i and m such777

that (bi, b′
i) = (bi+m, b′

i+m), is equivalent to the sequence with that subsequence removed.)778

So n ≤ 2O(|Q|). For each i < k, we can then compute δ′
ui(q) and δ′

uiv(q), using (24), and779

check whether whether they are equal.780

Finally, we consider the case of FO(<,MOD)-definability. By Theorem 6 (iii) and (25),781

L(A) is not FO(<,MOD)-definable iff there exist words u, v ∈ Σ∗, a reachable state q ∈ Q′
782

and numbers k, l ≤ |Q′| such that k is an odd prime, l > 1 and coprime to both 2 and783

k, q ̸∼ δ′
u(q), q ̸∼ δ′

v(q), q ̸∼ δ′
uv(q), and δ′

x(q) ∼ δ′
xu2(q) ∼ δ′

xvk (q) ∼ δ′
x(uv)l(q), for all784

x ∈ {u, v}∗. We start by guessing u, v ∈ Σ∗ in the form of, respectively, b(u) and b(u). Also,785

we guess k and l in binary and check that k is an odd prime and l is coprime to both 2 and k.786

By (24), δ′
x is determined by b(x), for every x ∈ {u, v}∗. Thus, we can proceed as follows to787

verify that u, v, k and l are as required. We perform the following steps, for each quadruple788

b of binary relations on Q. First, we check whether b = b(x), for some x ∈ {u, v}∗ (we789

discuss the algorithm for this in the next paragraph). If this is not the case, we construct the790

next quadruple b′ and process it as this b. If it is the case, we compute all the states δ′
x(q),791
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δ′
xu2(q), δ′

xvk (q), δ′
x(uv)l(q), δ′

u(q), δ′
v(q), δ′

uv(q), and check their required (non)equivalences792

w.r.t. ∼, using the same method as for checking δ′
u(q) ̸∼ q above. If they do not hold as793

required, our algorithm terminates with an answer no. Otherwise, we construct the next794

quadruple b′ and process it as this b. When all possible quadruples b of binary relations of795

Q have been processed, the algorithm terminates with an answer yes.796

Thus, it remains to explain how to check that a given quadruple b is equal to b(x), for797

some x ∈ {u, v}∗. We simply guess a sequence b0, . . . , bn of quadruples of binary relations798

on Q such that b0 = b(w0), bn = b and bi+1 = bi · b(wi+1), where wi ∈ {u, v}. It follows799

from the argument above that it is enough to consider n ≤ 2O(|Q|). ❑800

5 Deciding FO-rewritability of LTL OMQs801

In this section, using results and constructions from the previous one, we establish the802

complexity of recognising the type of FO-rewritability of any given LTL OMQ q. The803

following proposition formalises the connection between L-rewritability of q and L-definability804

of the corresponding regular languages LΞ(q) and LΞ(q(x)).805

▶ Proposition 12. Let L ∈ {FO(<),FO(<,≡),FO(<,MOD)} and Ξ ⊆ sig(q).806

(i) A Boolean LTL OMQ q = (O,κ) is L-rewritable over Ξ-ABoxes iff the language807

LΞ(q) is L-definable.808

(ii) A specific LTL OMQ q(x) = (O,κ(x)) is L-rewritable over Ξ-ABoxes iff the language809

LΞ(q(x)) is L-definable.810

Proof. (i) For every A ∈ Ξ, let χA(y) =
∨
A∈a∈ΣΞ

a(y), where a(y) is a unary predicate811

associated with a ∈ ΣΞ. Conversely, for every a ∈ ΣΞ, let χa(y) =
∧
A∈aA(y) ∧

∧
A/∈a ¬A(y).812

For any Ξ-ABox A ∈ Σ∗
Ξ and any n ∈ tem(A), we have SA |= A(n) iff SwA |= χA(n), and813

SwA |= a(n) iff SA |= χa(n). Thus, we obtain an L-sentence defining LΞ(q) by taking an814

L-rewriting of q and replacing all atoms A(y) in it with χA(y). Conversely, we obtain an815

L-rewriting of q by taking an L-sentence defining LΞ(q) and replacing all a(y) in it with816

χa(y).817

(ii) (⇒) Let φ(x) be an L-rewriting of q(x) and let φ′(x) be the result of replacing atoms
A(y) in φ(x) with χ′

A(y) =
∨
A∈a∈ΓΞ

a(y). Given an ABox A and i ∈ tem(A), we have
SA |= φ(i) iff SwA,i |= φ′(i). A word w = a0 . . . an ∈ Γ∗

Ξ is in LΞ(q(x)) iff (a) there is i such
that ai ∈ Σ′

Ξ, (b) aj ∈ ΣΞ for all j ̸= i, and (c) Sw |= φ′(i). Therefore, for the sentence

φ′′ = ∃x
(
φ′(x) ∧ ∀y

[(
(y = x) →

∨
a′∈Σ′

Ξ

a′(y)
)

∧
(
(y ̸= x) →

∨
a∈ΣΞ

a(y)
)])

and a word w ∈ Γ∗
Ξ, we have Sw |= φ′′ iff w = wA,i for some A and i such that SA |= φ(i).818

It follows that φ′′ defines LΞ(q(x)).819

(⇐) Suppose ψ is an L-sentence defining LΞ(q(x)). Let ψ′(x) be the result of replacing820

atoms a(y) in φ, for a ∈ ΣΞ, with a(y) ∧ (x ̸= y) and atoms a′(y), for a′ ∈ Σ′
Ξ, with821

a(y) ∧ (x = y). For w = a0 . . . an ∈ Σ∗
Ξ, we have Sw |= ψ′(i) iff Swi

|= ψ, where wi is w with822

ai replaced by a′
i. Let ψ′′(x) be the result of replacing a(y) in ψ′(x) with χa(y). Then, for823

any ABox A and i ∈ tem(A), we have SA |= ψ′′(i) iff SwA |= ψ′(i) iff SwA,i
|= ψ, and so824

ψ′′(x) is a rewriting of q. ❑825

In view of Proposition 12, we can reformulate the evaluation problem for q and q(x)826

over Ξ-ABoxes as the word problem for the languages LΞ(q) and LΞ(q(x)), both of which827

are regular by Proposition 5. Furthermore, to make circuit complexity applicable to our828
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languages, we can assume that the alphabets ΣΞ and ΓΞ of LΞ(q) and LΞ(q(x)) are encoded829

in binary in a way preserving the properties of languages from Table 3. For example, one830

can take an encoding similar to that in [14, Lemma 2.1]. Then Table 3 yields the following831

correspondences between the data complexity of answering and FO-rewritability of Boolean832

and specific LTL OMQs q:833

– q is FO(<,≡)-rewritable iff it can be answered in AC0;834

– q is FO(<,MOD)-rewritable iff it can be answered in ACC0;835

– q is not FO(<,MOD)-rewritable iff answering q in NC1-complete (unless ACC0 = NC1);836

– q is FO(<,RPR)-rewritable iff it can be answered in NC1.837

As a consequence of Theorem 11, which is applied to the exponential-size NFAs constructed838

in the proof of Proposition 5, we immediately obtain the following upper bound:839

▶ Theorem 13. Deciding L-rewritability of both Boolean and specific LTL OMQs over840

Ξ-ABoxes can be done in ExpSpace.841

Before establishing a matching lower bound, we prove two technical results, which allow842

us to reduce, in certain cases, L-rewritability of specific OMQs to L-rewritability of Boolean843

OMQs. Call two OMQs Ξ-equivalent (or simply equivalent) if they have the same certain844

answers over every Ξ-ABox (respectively, over every ABox). Our first useful observation845

allows one to remove axioms with ⊥ from LTL2⃝
bool ontologies:846

▶ Lemma 14. Let O be an LTL2⃝
bool ontology, let O′ result from O by removing every axiom847

of the form C1 ∧ · · · ∧ Ck → ⊥, and let O′′ result from O by replacing every axiom of the848

form C1 ∧ · · · ∧ Ck → ⊥ with C1 ∧ · · · ∧ Ck → A′, A′ → ⃝
FA

′, A′ → ⃝
PA

′, A′ → A, for a849

fresh atom A′. Let Ξ be a signature that does not contain the newly introduced atoms A′.850

(i) Every Boolean OMAQ q = (O, A) is Ξ-equivalent to the OMAQ q′ = (O′′, A). Every851

specific OMAQ q(x) = (O, A(x)) is Ξ-equivalent to the OMAQ q′(x) = (O′′, A(x)).852

(ii) Every Boolean OMPQ q = (O,κ) is equivalent to the OMPQ q′′ = (O′,κ′), where853

κ′ = κ ∨
∨

C1∧···∧Ck→⊥∈O

3F3P (C1 ∧ · · · ∧ Ck)854

Every specific OMPQ q(x) = (O,κ(x)) is equivalent to the OMPQ q′′(x) = (O′,κ′(x)).855

Proof. We only show the first claim in (i); other claims are similar and left to the reader.856

Let A be any Ξ-ABox. Suppose the certain answer to q′ over A is no. This means that there857

is a model I of O′′ and A such that I, n ̸|= A for all n ∈ Z. Then I is also a model of O and858

A. Indeed, if I, n |= C1 ∧ · · · ∧Ck for some n ∈ Z, then I, n |= A′, and so I, n |= A, which is859

a contradiction. It follows that the answer to q over A is no. Conversely, suppose the answer860

to q over A is no. Let I be a model of O and A such that I, n ̸|= A for all n ∈ Z. Extend I861

to the fresh atoms A′ by setting I, n ̸|= A′. Then I is a model of O′′ and A, as required. ❑862

The next statement, which will be used in Theorems 16, 20, 27, and 29, shows that863

deciding L-rewritability of specific LTL⃝
horn-OMAQs q(x) is polynomially reducible to deciding864

L-rewritability of Boolean LTL⃝
horn-OMAQs q:865

▶ Proposition 15. Let O be an LTL2⃝
horn-ontology without occurrences of ⊥, A an atom,866

κ a positive LTL formula, and Ξ a signature. Let X,X ′ be fresh atomic concepts and867

ΞX = Ξ ∪ {X}. Then the following hold:868

(i) The specific OMAQ q(x) = (O, A(x)) is L-rewritable over Ξ-ABoxes iff the Boolean869

OMAQ q′ = (O ∪ {A ∧X → X ′}, X ′) is L-rewritable over ΞX-ABoxes.870
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(ii) The specific OMPQ qκ(x) = (O,κ(x)) is L-rewritable over Ξ-ABoxes iff the Boolean871

OMPQ qX = (O, X ∧ κ) is L-rewritable over ΞX-ABoxes.872

Proof. We only show (i) as the proof of (ii) is analogous. Recall from [7] that, since O is a873

Horn ontology, for any ABox A consistent with O, there is a canonical model CO,A of O and874

A such that for any OMPQ κ,875

(O,A) |= ∃xκ(x) iff CO,A |= κ(k) for some k ∈ Z876

CO,A |= κ(k) iff (O,A) |= κ(k) for all k ∈ Z. (26)877
878

(⇒) We show that if Q(x) is an L-rewriting of q(x) over Ξ-ABoxes, then ∃x (Q(x)∧X(x))879

is an L-rewriting of qX over ΞX -ABoxes, that is, SA |= ∃x (Q(x) ∧X(x)) iff the answer to880

qX over A is yes, for every ΞX -ABox A. (⇒) Suppose SA |= ∃x (Q(x) ∧X(x)). As X does881

not occur in O, we then have SA |= Q(n) and SA |= X(n), for some n ∈ tem(A). Since882

Q(x) is a rewriting of q(x), it follows that n is a certain answer to q(x) over A, and so883

I, n |= κ for every model I of (O,A). Since I, n |= X, for every such model I, it follows884

that I, n |= X ∧ κ for every model I of (O,A), as required. (⇐) Suppose the answer to885

qX over A is yes. As qX is Horn, it follows that I, n |= X ∧ κ for the canonical model I of886

(O,A). Since X does not occur in O, there exists n in tem(A) such that SA |= X(n) and887

I, n |= κ. Thus, n is a certain answer to q(x) over A, and so SA |= ∃x (Q(x) ∧X(x)).888

(⇐) Suppose Q is an L-rewriting of qX over ΞX -ABoxes. Fix a variable x that does not889

occur in Q and let Q− be the result of replacing every occurrence of X(y) in Q with (x = y).890

We show that Q− is an L-rewriting of q(x) over Ξ-ABoxes. Given a Ξ-ABox A, construct891

the ΞX -ABox Ak
X = A ∪ {X(k)}, for any k ∈ tem(A). Note that SA |= Q−(k) iff SAk

X
|= Q,892

for every k ∈ tem(A). Indeed, SAk
X

|= X(y) ↔ (k = y), and so SAk
X

|= Q ↔ Q−(k). It893

remains to recall that X does not occur in Q−, from which SAk
X

|= Q−(k) iff SA |= Q−(k).894

Now, suppose k is a certain answer to q(x) over A. Then the certain answer to qX over895

Ak
X is yes, and so SAk

X
|= Q, which implies SA |= Q−(k). Conversely, if k is not a certain896

answer to q over A, then the answer to qX over Ak
X is no. We then have SAk

X
̸|= Q, and so897

SA ̸|= Q−(k). ❑898

In the remainder of this section, we establish a matching ExpSpace lower bound, which899

holds already for LTL⃝
horn OMAQs and LTL⃝

krom OMPEQs.900

A counter is a set A = {Aij | i = 0, 1, j = 1, . . . , k} of atomic concepts that will be used901

to store values between 0 and 2k − 1, which can be different at different time points. The902

counter A is well-defined at a time point n ∈ Z in an interpretation I if I, n |= A0
j ∧A1

j → ⊥903

and I, n |= A0
j ∨A1

j , for any j = 1, . . . , k. In this case, the value of A at n in I is given by904

the unique binary number bk . . . b1 for which I, n |= Ab1
1 ∧ · · · ∧Abk

k . We require the following905

formulas, for c = bk . . . b1:906

– [A = c] = Ab1
1 ∧ · · · ∧Abk

k with I, n |= [A = c] iff the value of A is c (provided that A is907

well-defined);908

– [A< c] =
∨
k≥i≥1
bi=1

(
A0
i ∧

∧k
j=i+1 A

bj

j

)
with I, n |= [A < c] iff the value of A is smaller than909

c (provided that A is well-defined);910

– [A> c] =
∨
k≥i≥1
bi=0

(
A1
i ∧

∧k
j=i+1 A

bj

j

)
with I, n |= [A > c] iff the value of A is greater than911

c (provided that A is well-defined).912

We regard the set (⃝
FA) = {⃝

FA
i
j | i = 0, 1, j = 1, . . . , k} as another counter that stores913

at n in I the value stored by A at n + 1 in I. This allows us to use formulas such as914

[A > c1] → [(⃝
FA) = c2], which says that if the value of A at n in I is greater than c1, then915

the value of A at n+ 1 in I is c2.916

CVIT 2016



23:24 Deciding FO-rewritability of Ontology-Mediated Queries in Linear Temporal Logic

Given two counters A and B, we set917

[A = B] =
k∧
j=1

(
(B0

j → A0
j ) ∧ (B1

j → A1
j )

)
,918

[A = B + 1] =
k∧
i=1

(
(B0

i ∧B1
i−1 ∧ · · · ∧B1

1 → A1
i ∧A0

i−1 ∧ · · · ∧A0
1) ∧919 ∧

j<i

((B0
i ∧B0

j → A0
i ) ∧ (B1

i ∧B0
j → A1

i ))
)
.920

921

We have I, n |= [A = B] iff the values of A and B at n in I coincide, and I, n |= [A = B + 1]922

iff the value of A at n is equal to the value of B at n plus one. In a similar way, we define923

the formula [A = B − 1].924

▶ Theorem 16. For any L ∈ {FO(<),FO(<,≡),FO(<,MOD)}, deciding L-rewritability of925

LTL⃝
horn Boolean or specific OMAQs over Ξ-ABoxes is ExpSpace-hard.926

Proof. Consider a deterministic Turing machine M with exponential space bound, which927

behaves as described in the proof of Theorem 8. Given an input word x = x1 . . . xn, let N928

be the space needed for the computation of M on x, and let N ′ be the first prime exceeding929

N + 1 and such that N ′ ̸= ±1 mod 10. Our aim is to construct LTL⃝
horn ontologies O<, O≡930

and OMOD of polynomial size that simulate the exponential-size, O(N ′), DFAs A<, A≡ and931

AMOD from the proof Theorem 8, whose languages are L-definable (for the corresponding L)932

iff M rejects x.933

First we define O<. Let k = ⌈log2 N
′⌉ + 1.934

The ontology O< uses the following atomic concepts: the symbols in Σ′′ from the proof935

of Theorem 8, S, Q0, Q1, Qa, Qab, Pa for a, b ∈ Σ′, F , X, Y , and Fend; we also use counters936

A and L with atomic concepts Aij and Lij , for i = 0, 1, j = 1, . . . , k. Set Ξ = Σ′′ ∪ {X,Y },937

where Σ′′ is defined in the proof of Theorem 8.938

In the DFA Ai, we represent939

– each state qjy of Ai as [A = i] ∧Qy ∧ [L = j];940

– each state pja of Ai as [A = i] ∧ Pa ∧ [L = j];941

– fi as [A = i] ∧ F ;942

– si as [A = i] ∧ S.943

To make the ontology O< simulate the automaton A< (see Lemma 17) we require the944

following axioms (which are equivalent to polynomially-many LTL⃝
horn axioms):945

– a ∧ b → ⊥, for a, b ∈ Ξ; (⋆1)946

– X → [(⃝
FA) = 0] ∧ ⃝

FS to simulate the initial state of A<; (⋆2)947

– [A = 0] ∧ S ∧ Y → Fend to simulate the accepting state of A<; (⋆3)948

– the axioms949

[A = 0] ∧ S ∧ a1 → [(⃝
FA) = 0] ∧ ⃝

FQ0 ∧ [(⃝
FL) = A],950

[A < N ′ − 1] ∧ F ∧ a2 → [(⃝
FA) = A + 1] ∧ ⃝

FS,951

[A = N ′ − 1] ∧ F ∧ a2 → [(⃝
FA) = 0] ∧ ⃝

FS;952953

describing the behaviour of A< in states si and fi;954
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– the axioms955

[A = 0] ∧Q0 ∧ [L = 0] ∧ ♯ → [(⃝
FA) = 0] ∧ ⃝

FQ0 ∧ [(⃝
FL) = 1],956

[A = 0] ∧Q0 ∧ [L = 1] ∧ (q1, x1) → [(⃝
FA) = 0] ∧ ⃝

FQ0 ∧ [(⃝
FL) = 2],957

. . .958

[A = 0] ∧Q0 ∧ [L = n] ∧ xn → [(⃝
FA) = 0] ∧ ⃝

FQ0 ∧ [(⃝
FL) = n+ 1],959

[A = 0] ∧Q0 ∧ [L > n] ∧ [L< N + 1] ∧ b → [(⃝
FA) = 0] ∧ ⃝

FQ0 ∧ [(⃝
FL) = L + 1],960

[A = 0] ∧Q0 ∧ [L = N + 1] ∧ ♯ → [(⃝
FA) = 0] ∧ ⃝

FQ1 ∧ [(⃝
FL) = 1],961

[A = 0] ∧Q1 ∧ [L = 1] ∧ a → [(⃝
FA) = 0] ∧ ⃝

FQ1 ∧ [(⃝
FL) = 0], for a ̸= (qacc, b), ♯,962

[A = 0] ∧Q1 ∧ [L = 0] ∧ a → [(⃝
FA) = 0] ∧ ⃝

FQ1 ∧ [(⃝
FL) = 0], for a ̸= ♯,963

[A = 0] ∧Q1 ∧ [L = 0] ∧ ♯ → [(⃝
FA) = 0] ∧ ⃝

FQ1 ∧ [(⃝
FL) = 1],964

[A = 0] ∧Q1 ∧ [L = 1] ∧ (qacc, b) → [(⃝
FA) = 0] ∧ ⃝

FQ1 ∧ [(⃝
FL) = 2],965

[A = 0] ∧Q1 ∧ [L > 1] ∧ [L < N + 1] ∧ b → [(⃝
FA) = 0] ∧ ⃝

FQ1 ∧ [(⃝
FL) = L + 1)],966

[A = 0] ∧Q1 ∧ [L = N + 1] ∧ ♭ → [A = 0] ∧ ⃝
FF967968

describing the transitions of A0;969

– the axioms for a, b, c ∈ Σ′ \ {♭}, b, c ̸= ♯970

[A > 0] ∧ [A < N + 1] ∧Q0 ∧ [L > 1] ∧ a → [(⃝
FA) = A] ∧ ⃝

FQ0 ∧ [(⃝
FL) = L − 1],971

[A > 0] ∧ [A < N + 1] ∧Q0 ∧ [L = 1] ∧ a → [(⃝
FA) = A] ∧ ⃝

FQa ∧ ⃝
F [L = 0],972

[A > 0] ∧ [A < N + 1] ∧Qa ∧ [L = 0] ∧ b → [(⃝
FA) = A] ∧ ⃝

FQab ∧ ⃝
F [L = 1],973

[A > 0] ∧ [A < N + 1] ∧Qab ∧ [L = 1] ∧ c → [(⃝
FA) = A] ∧ ⃝

FQzabc
∧ ⃝

F [L = 2],974

[A > 0] ∧ [A < N + 1] ∧Qab ∧ [L = 1] ∧ ♯ → [(⃝
FA) = A] ∧ ⃝

FPzab♯
∧ ⃝

F [L = 2],975

[A > 0] ∧ [A < N + 1] ∧Qa ∧ [L > 1] ∧ [L < N ] ∧ b → [(⃝
FA) = A] ∧ ⃝

FQa ∧ [(⃝
FL) = L + 1],976

[A > 0] ∧ [A < N + 1] ∧Qa ∧ [L > 1] ∧ [L < N ] ∧ ♯ → [(⃝
FA) = A] ∧ ⃝

FPa ∧ [(⃝
FL) = L + 1]977

[A > 0] ∧ [A < N + 1] ∧ Pa ∧ [L > 1] ∧ [L < N ] ∧ b → [(⃝
FA) = A] ∧ ⃝

FPa ∧ [(⃝
FL) = L + 1],978

[A > 0] ∧ [A < N + 1] ∧ Pa ∧ [L = N ] ∧ b → [(⃝
FA) = A] ∧ ⃝

FQba ∧ [(⃝
FL) = 0],979

[A > 0] ∧ [A < N + 1] ∧Qa ∧ [L = N ] ∧ ♯ → [(⃝
FA) = A] ∧ ⃝

FQ♯a ∧ [(⃝
FL) = 0],980

[A > 0] ∧ [A < N + 1] ∧Qab ∧ [L = 0] ∧ b → [(⃝
FA) = A] ∧ ⃝

FQab ∧ [(⃝
FL) = 1],981

[A > 0] ∧ [A < N + 1] ∧Qb ∧ [L < N + 1] ∧ ♭ → [(⃝
FA) = A] ∧ ⃝

FF,982

[A > 0] ∧ [A < N + 1] ∧Qbc ∧ [L = 1] ∧ ♭ → [(⃝
FA) = A] ∧ ⃝

FF,983984

simulating the transitions of Ai, for 0 < i ≤ N + 1;985

– the axioms986

[A > N + 1] ∧ [A < N ′ + 1] ∧Q0 ∧ a → [(⃝
FA) = A] ∧ ⃝

FQ0 ∧ [(⃝
FL) = L], for a ̸= ♭,987

[A > N + 1] ∧ [A < N ′ + 1] ∧Q0 ∧ ♭ → [(⃝
FA) = A] ∧ ⃝

FF988989

simulating the transitions of Ai, for N + 1 ≤ i ≤ N ′.990

Next, we define the ontology O≡ by adding to O< the axiom

[A < N ′ + 1] ∧ S ∧ ♮ → [(⃝
FA) = A] ∧ ⃝

FS

simulating the ♮-transitions in A≡. We also we extend Ξ with the atomic concept ♮.991

To define the ontology OMOD more work is needed. First, we extend O< with992

CVIT 2016
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– the following axioms regarding AN ′ :993

[A = N ′] ∧ S ∧ a1 → [(⃝
FA) = N ′] ∧ ⃝

FQ0,994

[A = N ′] ∧ F ∧ a2 → [(⃝
FA) = N ′] ∧ ⃝

FS,995996

– the following axioms handling ♮:997

[A = 0] ∧ S ∧ ♮ → [(⃝
FA) = N ′] ∧ ⃝

FS,998

[A = N ′] ∧ S ∧ ♮ → [(⃝
FA) = 0] ∧ S,999

[A > 0] ∧ [A < N ′] ∧ S ∧ ♮ → [(⃝
FA) = J] ∧ ⃝

FS.10001001

Here, J is a new counter that stores the value j = −1/i in the field FN ′ , which is required to
make sure that, for i ̸= 0, N ′, we have

OMOD |= [A = i] ∧ S ∧ ♮ → [(⃝
FA) = j] ∧ ⃝

FS.

We achieve this as follows. We compute the number r such that ir = 1 mod N ′ using1002

the following modified version of Penk’s algorithm; see, e.g., [38, Exercise 4.5.2.39]. The1003

algorithm starts with u = N ′, v = i, r = 0, s = 1. In the course of the algorithm, u and1004

v decrease, with the following conditions being met: GCD(u, v) = 1, u = ri mod N ′, and1005

v = si mod N ′. The algorithm repeats the following steps until v = 0:1006

– if v is even, replace it with v/2, and replace s with either s/2 or (s+N ′)/2, whichever is1007

a whole number;1008

– if u is even, replace it with u/2, and replace r with either r/2 or (r+N ′)/2, whichever is1009

a whole number;1010

– if u, v are odd and u > v, replace u with (u − v)/2 and r with either (r − s)/2 or1011

(r − s+N ′)/2, whichever is a whole number;1012

– if u, v are odd and v ≥ u, replace v with (v − u)/2 and s with either (s − r)/2 or1013

(s− r +N ′)/2, whichever is a whole number.1014

The binary length of the larger of u and v is reduced by at least one bit, guaranteeing that1015

the procedure terminates in at most 2k iterations while maintaining the conditions. At1016

termination, v = 0 as otherwise a reduction is still possible. If u = 1, we get 1 = rimod N ′
1017

and r = 1/i in the field FN ′ , so we can set j = N ′ − r.1018

For two counters X and Y, set

[X = Y/2] = X0
k ∧

k∧
l=2

(
(Y 0
l → X0

l−1) ∧ (Y 1
l → X1

l−1)
)
.

We have I, n |= [X = Y/2] iff the values x of X and y of Y at n in I satisfy x = ⌊y/2⌋. We1019

define three new counters C=
XY, C−

XY, and C+
XY, which come with the following axioms, for all1020

ι1, ι2, ι3 ∈ {0, 1}, that should be added to the ontology:1021

Xι1
i ∧ Y ι2i → (C=

XY)(ι1+ι2+1) mod 2
i , for all i ∈ [1, k],1022

Xι1
1 ∧ Y ι21 → (C+

XY)0
1,1023

Xι1
i−1 ∧ Y ι2i−1 ∧ (C+

XY)ι3i−1 → (C+
XY)(ι1ι2+ι1ι3+ι2ι3) mod 2

i , for all i ∈ [2, k],1024

Xι1
1 ∧ Y ι21 → (C−

XY)0
1,1025

Xι1
i−1 ∧ Y ι2i−1 ∧ (C−

XY)ι3i−1 → (C−
XY)(ι1ι2+ι1ι3+ι2ι3+ι2+ι3) mod 2

i , for all i ∈ [2, k].1026
1027
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Define the following formulas, where W is some counter:1028

[X > Y] =
k∨
i=1

(
X1
i ∧ Y 0

i ∧
k∧

j=i+1
(C=

XY)1
i

)
,1029

[X ≥ Y] = [X > Y] ∨
k∧
i=1

(C=
XY)1

i ,1030

[W = X + Y] =
k∧
i=1

∧
ι1,2,3∈{0,1}

(
Xι1
i ∧ Y ι2i ∧ (C+

XY)ι3i → W ι1+ι2+ι3 mod 2
i

)
,1031

[W = X − Y] =
k∧
i=1

∧
ι1,2,3∈{0,1}

(
Xι1
i ∧ Y ι2i ∧ (C−

XY)ι3i → W ι1+ι2+ι3 mod 2
i

)
.1032

1033

We have I, n |= [X > Y], I, n |= [X ≥ Y], I, n |= [W = X + Y], or I, n |= [W = X − Y] iff the1034

values x of X, y of Y, and w of W at n in I satisfy, respectively, the following conditions:1035

x > y, x ≥ y, (x+ y < 2k) → (w = x+ y), or (x > y) → (w = x− y).1036

In our ontology OMOD, we use counters Ul, Vl, Rl, R+
l , R−

l , Sl, S−
l , S+

l , Dl, Gl, Hl, for1037

l ∈ [0, . . . , 2k], along with some auxiliary counters CXY. Intuitively, the counters with the1038

index l hold the values of the corresponding expressions after the l-th step of the algorithm1039

according to the table below:1040

Ul,Vl,Rl,Sl u, v, r, s

R+
l ,S

+
l r +N ′, s+N ′

R−
l ,S

−
l −rmod N ′,−smod N ′

Dl |u− v|
Gl the even number from the pair ((r − s) mod N ′), ((r − s) mod N ′) +N ′

Hl the even number from the pair ((s− r) mod N ′), ((s− r) mod N ′) +N ′

1041

We add the following axioms (simulating the algorithm above) to the ontology OMOD1042

constructed so far:1043

[A > 0] ∧ [A < N ′] ∧ S ∧ ♮ → [U0 = N ′] ∧ [V0 = A] ∧ [R0 = 0] ∧ [S0 = 1],1044

[Ul > Vl] → [Dl = Ul − Vl],1045

[Vl ≥ Ul] → [Dl = Vl − Ul],1046

[R+
l = Rl + U0] ∧ [R−

l = U0 − Rl] ∧ [S+
l = Sl + U0] ∧ [S−

l = U0 − Sl],1047

[Rl ≥ Sl] ∧ (((Rl)0
1 ∧ (Sl)0

1) ∨ ((Rl)1
1 ∧ (Sl)1

1)) → [Gl = Rl − Sl] ∧ [Hl = S+
l + R−

l ],1048

[Rl ≥ Sl] ∧ (((Rl)1
1 ∧ (Sl)0

1) ∨ ((Rl)0
1 ∧ (Sl)1

1)) → [Gl = Rl + S−
l ] ∧ [Hl = S+

l − Rl],1049

[Sl > Rl] ∧ (((Rl)0
1 ∧ (Sl)0

1) ∨ ((Rl)1
1 ∧ (Sl)1

1)) → [Gl = R+
l + S−

l ] ∧ [Hl = Sl − Rl],1050

[Sl > Rl] ∧ (((Rl)1
1 ∧ (Sl)0

1) ∨ ((Rl)0
1 ∧ (Sl)1

1)) → [Gl = R+
l − Sl] ∧ [Hl = Sl + R−

l ],1051

[Vl > 0] ∧ (Vl)0
1 ∧ (Sl)0

1 → [Ul+1 = Ul] ∧ [Vl+1 = Vl/2] ∧ [Rl+1 = Rl] ∧ [Sl+1 = Sl/2],1052

[Vl > 0] ∧ (Vl)0
1 ∧ (Sl)1

1 → [Ul+1 = Ul] ∧ [Vl+1 = Vl/2] ∧ [Rl+1 = Rl] ∧ [Sl+1 = S+
l /2],1053

(Vl)1
1 ∧ (Ul)0

1 ∧ (Rl)0
1 → [Ul+1 = Ul/2] ∧ [Vl+1 = Vl] ∧ [Rl+1 = Rl/2] ∧ [Sl+1 = Sl],1054

(Vl)1
1 ∧ (Ul)0

1 ∧ (Rl)1
1 → [Ul+1 = Ul/2] ∧ [Vl+1 = Vl] ∧ [Rl+1 = R+

l /2] ∧ [Sl+1 = Sl],1055

(Vl)1
1 ∧ (Ul)1

1 ∧ [Ul > Vl] → [Ul+1 = Dl/2] ∧ [Vl+1 = Vl] ∧ [Rl+1 = Hl/2] ∧ [Sl+1 = Sl],1056

(Vl)1
1 ∧ (Ul)1

1 ∧ [Vl ≥ Ul] → [Ul+1 = Ul] ∧ [Vl+1 = Dl/2] ∧ [Rl+1 = Rl] ∧ [Sl+1 = Gj/2],1057

[Vl = 0] → [J = R−
l ].1058

1059
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Here, as before, Ξ = Σ′′ ∪ {X,Y }. We call Ψ a state-formula if it takes one of the following1060

forms:
(
[A = i] ∧Qy ∧ [L = j]

)
,

(
[A = i] ∧ Pa ∧ [L = j]

)
,

(
[A = i] ∧ S

)
, or

(
[A = i] ∧ F

)
, in1061

which case we refer to, respectively, qjy of Ai, pja of Ai, si, or fi as the state corresponding to1062

Ψ.1063

For L ∈ {FO(<),FO(<,≡),FO(<,MOD)}, use AL and OL to denote the corresponding1064

automaton and ontology defined above.1065

▶ Lemma 17. Let A be a Ξ-ABox and let Ψ be a state-formula. Then the following hold:1066

(i) A is inconsistent with OL iff there is i such that a(i), b(i) ∈ A for different a, b ∈ Ξ.1067

(ii) If A is consistent with OL, then OL,A |= Ψ(l) iff A contains a subset of the form1068

{X(l −m− 1), a1(l −m), a2(l −m+ 1), a3(l −m+ 2), . . . , am(l − 1)}, (27)1069

where m ≥ 0, ah ∈ Σ′′ for all h ∈ [1,m], and AL, having read the word a1 . . . am, is in the1070

state corresponding to Ψ.1071

Proof. (i) This is so because the only axiom that can lead to inconsistency is (⋆1) and, for1072

consistent A and OL, b ∈ Ξ and n ∈ Z, we have O,A |= b(n) iff b(n) ∈ A.1073

(ii) (⇐) If there is such a subset of A, then OL,A |=
(
[A = 0] ∧ S

)
(l − m). One can1074

check by induction on j that if the automaton is in a state q after reading a1 . . . aj−1, then1075

O,A |= Ψ′(l −m+ j), where q is the state corresponding to the state-formula Ψ′.1076

(⇒) If OL,A |= Aι1j1
(l), for some Aι1j1

∈ A, then OL,A |= b(l−1), for some b ∈ Ξ. There are1077

two possibilities: either b = X or b ∈ Σ′′ and there is Aι2j2
∈ A such that OL,A |= Aι2j2

(l − 1).1078

Therefore there is a unique subset of A of the form (27). By induction on j ∈ [1,m+ 1] we1079

can prove that there is a unique state-formula Ψj such that OL,A |= Ψj(l −m+ j) and it1080

corresponds to the state AL is in after reading a1 . . . aj−1. ❑1081

▶ Lemma 18. For L ∈ {FO(<),FO(<,≡),FO(<,MOD)}, the LTL⃝
horn OMAQ (OL, Fend) is1082

L-rewritable over Ξ-ABoxes iff the language L(AL) is L-definable.1083

Proof. (⇒) For w = a1 . . . am ∈ Σ′′, let Aw = {X(0), a1(1), . . . , am(m), Y (m + 1)}. By1084

Lemma 17 and (⋆2), we see that w ∈ L(AL) iff the answer to (OL, Fend) over Aw is yes.1085

(⇐) Suppose L(AL) is L-definable and A is a Ξ-ABox. If the certain answer to (OL, Fend)
is yes, then either A is inconsistent with OL, or OL,A |=

(
[A = 0] ∧ S ∧ Y

)
(x) for some x.

By Lemma 17 (i), inconsistency is L-definable. Suppose that A is consistent with OL. If
OL,A |=

(
[A = 0] ∧ S ∧ Y

)
(x) then A contains a subset of the form

{X(i− 1), a1(i), a2(i+ 1), a3(i+ 2), . . . , ak−i(k − 1), Y (k)}

with a1a2 . . . ak−i ∈ L(AL). As L(AL) is definable by an L-formula this condition is also1086

L-definable. ❑1087

Theorem 16 is a direct consequence of Lemma 18 and the properties of AL. ❑1088

▶ Theorem 19. For any L ∈ {FO(<),FO(<,≡),FO(<,MOD)}, deciding L-rewritability of1089

Boolean and specific LTL⃝
krom OMPEQs over Ξ-ABoxes is ExpSpace-complete.1090

Proof. The upper bound follows from Proposition 5 and Theorem 8. We show the matching
lower bound by reduction of LTL⃝

horn OMAQs to LTL⃝
krom OMPEQs and using Theorem 16.

Consider an LTL⃝
horn OMAQ q = (O, A). We can assume that all of the axioms in O

take the form C → ⊥ or C → B, for some C = C1 ∧ · · · ∧ Cn and an atomic concept B.
We construct an LTL⃝

krom OMPQ q′ = (O′,κ) that is L-rewritable over Ξ-ABoxes iff q is
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L-rewritable. Using the atomic concepts {B, B̄ | B ∈ sig(q)}, we define O′ to contain the
axioms B ∧ B̄ → ⊥ and ⊤ → B ∨ B̄, for all B ∈ sig(q), and set

κ = A ∨
∨

C→⊥ in O

3F3P C ∨
∨

C→B in O

3F3P (C ∧ B̄).

It is readily seen that, for any Ξ-ABox A, the certain answer to q over A is yes iff the answer1091

to q′ over A is yes, and k is a certain answer to q(x) over A iff it is also a certain answer to1092

q′(x). It follows that q′ is L-rewritable over Ξ-ABoxes iff q is L-rewritable. ❑1093

6 Deciding L-rewritability of linear positive LTL⃝
horn OMQs1094

As well known, deciding FO-rewritability of (classical) monadic datalog queries is 2ExpTime-1095

complete [12, 24], which goes down to PSpace-complete for the important class of linear1096

monadic queries [24,54].1097

In this section, we focus on linear LTL⃝
horn OMPQs. First, in Section 6.1, for any linear1098

LTL⃝
horn OMAQ q, we construct in polynomial space a DFA A′ such that q is L-rewritable1099

iff L(A′) is L-definable, for any L ∈ {FO(<),FO(<,≡),FO(<,MOD)}. So, by Theorem 11,1100

deciding L-rewritability of linear LTL⃝
horn OMAQs q can be done in PSpace. An essential1101

part of this proof is the construction of a (polynomial-size) 2NFA AΞ
q that recognises a certain1102

encoding of the language of q. Further in this section, we show that any DFA can be simulated1103

by a linear LTL⃝
horn OMAQ, which gives a PSpace lower bound for deciding L-rewritability.1104

In Section 6.2, we give semantic criteria of L-rewritiability, for L ∈ {FO(<),FO(<,≡)}, of1105

LTL⃝
horn OMPQs and a PSpace algorithm for checking their L-rewritability, which is based1106

on the 2NFA AΞ
q .1107

6.1 Linear OMAQs1108

▶ Theorem 20. For any L ∈ {FO(<),FO(<,≡),FO(<,MOD)}, deciding L-rewritability of1109

linear LTL⃝
horn OMAQs over Ξ-ABoxes can be done in PSpace.1110

Proof. By (i) of Lemma 14 and Proposition 15, it suffices to prove this result for Boolean1111

OMAQs in the given class without occurrences of ⊥. Let q = (O, B) be such an OMAQ1112

and Ξ a signature. By possibly adding new IDB predicates, we convert O to the form with1113

axioms of two types:1114

(ϱ1) C1 ∧ · · · ∧ Ck → A′,1115

(ϱ2) C1 ∧ · · · ∧ Ck ∧ ⃝iA → A′,1116

where k ≥ 0, C1, . . . , Ck contain no IDB atomic concepts, A,A′ ∈ idb(O), i ∈ {−1, 0, 1}, and

⃝jA =



A, if j = 0,
⃝

P . . .⃝
P︸ ︷︷ ︸

j

A, if j < 0,

⃝
F . . .⃝

F︸ ︷︷ ︸
j

A, if j > 0.

First, we define a quadruple AΞ
O = (2Ξ, Q, {q0}, δ) (which is in essence a 2NFA without1117

final states), where the set of states Q =
⋃
ϱ∈O Qϱ ∪ {q0, qh} ∪ {qA | A ∈ idb(O)}, Q0 = {q0},1118

and the transition function δ =
⋃
ϱ∈O δϱ∪{q0 →a,1 q0 | a ∈ 2Ξ}, where Qϱ and δϱ are defined1119

as follows. If ϱ is of the form (ϱ1) and Ci = ⃝jiAi, 1 ≤ i ≤ k, then Qϱ = {qϱ} ∪ Q′
ϱ and1120

δϱ = {q0 →a,0 qϱ | a ∈ 2Ξ} ∪ δ′
ϱ, where Q′

ϱ and δ′
ϱ are described below. If j1 < 0 (the cases1121
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j1 = 0 and j1 > 0 are analogous), then δ′
ϱ is such that AΞ

O makes j1 − 1 steps to the left, by1122

reading any symbols from 2Ξ. After that, if we read any symbol a with A1 ̸∈ a, AΞ
O comes to1123

a fixed ‘dead-end’ state qh. Otherwise, it makes j1 − 1 steps to the right (i.e., to where it1124

was originally before executing any transitions for i = 1) and repeats the same process for1125

C2 = ⃝j2A2, etc. After executing the transitions for Ck = ⃝jkAk and provided that qh was1126

avoided, we come to the state qA′ . If ϱ is of the form (ϱ2), then Qϱ is the same as above and1127

δϱ = {qA →a,0 qϱ | a ∈ 2Ξ} ∪ δ′
ϱ is the same as above, finishing in either qh or qA′ .1128

By an atomic type υO for O, we mean a restriction of some type τ for O (see Proposition 5)1129

to atomic concepts (or their negations). Given a model I of O, we denote by υI,O(n), for1130

n ∈ Z, the atomic type for O that holds in I at n. We omit I from υI,O(n) when it is clear1131

from the context. Recall that CO,A denotes the canonical model of O and A, which exists1132

because O is ⊥-free. Let N = M + 2M2, where M is the number of occurrences of ⃝
F and1133

⃝
P in O.1134

▶ Lemma 21. Let A be any ABox of the form ∅NB∅N and O a linear LTL⃝
horn ontology.1135

Then we have: A ∈ υCO,A(ℓ) iff there exists a run (q0, 0), . . . , (q, ℓ), (qA, i) of AΞ
O on A, for1136

all N ≤ ℓ < |A| −N .1137

Proof. We call a sequence D of the form1138

1139

(C0
1 ∧ · · · ∧ C0

k0
→ A1, n1), (C1

1 ∧ · · · ∧ C1
k1

∧ ⃝i1A1 → A2, n2), . . . ,1140

(Cm1 ∧ · · · ∧ Cmkm
∧ ⃝imAm → A,nm+1) (28)1141

1142

a derivation of A from O and A if the axioms are from O and the numbers n1, . . . , nm, nm+11143

are such that nj+1 = nj + ij and A |= Cj1 ∧ · · · ∧ Cjkj
(nj+1). We say that such a derivation1144

ends at n if nm+1 = n. It is straightforward to verify that A ∈ υCO,A(ℓ) iff there is a1145

derivation of A at ℓ, for any ℓ ∈ Z.1146

Let A be of the form ∅NB∅N . Our next aim is to prove that (a) for any N ≤ ℓ < |A| −N ,1147

if is a derivation of A at ℓ, then there is a derivation (28) of A at ℓ such that 0 ≤ nj < |A|,1148

for all numbers nj in this derivation.1149

▶ Proposition 22. Let D1, D2, D3 be derivations from O and A of the form:1150

D1 = . . . , (C1 ∧ · · · ∧ Ck ∧ ⃝iA → A0, n0),1151

D2 = (⃝i0A0 → A1, n1), . . . , (⃝im−1Am−1 → Am, nm),1152

D3 = (C ′
1 ∧ · · · ∧ C ′

k′ ∧ ⃝iAm → Am+1, nm+1), . . .11531154

If D1D2D3 is a derivation of A at ℓ, then there exists a derivation D1D
′
2D3 of A at ℓ from1155

O and A such that min{n0, nm+1} − 2M2 ≤ nj ≤ max{n0, nm+1} + 2M2 for all numbers nj1156

in D′
2.1157

Proof. Suppose nm+1 > n0 (the opposite case is analogous). Let j be the earliest number in1158

D2 such that1159

– either nj = nm+1 and nj+k = nm+1 for some k ≥ 0,1160

– or nj = n0 and nj+k = n0 for some k ≥ 0.1161

If such j does not exist, then clearly, (d) holds with D′
2 = D2 and we are done. Sup-1162

pose the former case holds for the earliest j. Let D2 = D4D5D6, where D5 is the sub-1163

sequence of D2 between j (not inclusive) and j + k. In D5, consider any quadruple1164

((Aj′ , nj′), (Aj′′ , nj′′), (Ak′′ , nk′′), (Ak′ , nk′)) such that j′ ≤ j′′ ≤ k′′ ≤ k′, nj′ = nk′ ,1165
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nj′′ = nk′′ , Aj′ = Aj′′ and Ak′ = Ak′′ . Clearly, D1(D4D
′
5D6)D3 is also a derivation L1166

at ℓ from O and A, where1167

D′
5 =(⃝ijAj → Aj+1, nj+1), . . . , (⃝ij′−1Aj′−1 → Aj′ , nj′), (⃝ij′′Aj′′ → Aj′′+1, nj′′+1 − d), . . .1168

(⃝ik′′−1Ak′′−1 → Ak′′ , nk′′ − d), (⃝ik′Ak′ → Ak′+1, nk′+1), . . . ,1169

(⃝ij+k−1Aj+k−1 → Aj+k, nj+k),11701171

and d = nj′′ − nj′ . After recursively applying to D5 the transformation above for each quad-1172

ruple ((Aj′ , nj′), (Aj′′ , nj′′), (Ak′′ , nk′′), (Ak′ , nk′)) as above, we obtain D′
5. It is easy to check1173

that there exist no n1 ̸= n2 and atoms A,B such that both (⃝i1A1 → A,n1), . . . , (⃝i2A2 →1174

B,n1) and (⃝i3A3 → A,n2), . . . , (⃝i4A4 → B,n2) are in D′
5. Therefore, |nj′ −nm+1| ≤ 2M2

1175

for all numbers nj′ in D′
5. If the latter case holds for the earliest j, analogously, we can1176

transform the subsequence D5 of D2 between j (not inclusive) and j+k into the subsequence1177

D′
5 with all numbers |nj′ − n0| ≤ 2M2. Then, we find j in D6 satisfying one of the two1178

cases above and transform D6 analogously. We proceed until there are no more j satisfying1179

either of the two cases and the result D′
2 of transformation is, clearly, as required by the1180

proposition. ❑1181

Now, to show (a), consider a derivation D of A at ℓ, for N ≤ ℓ < |A|−N with the numbers1182

nj . Take the first nj , such that nj ≥ |B| +M or nj < 2M2. Suppose the former was the case.1183

Since Ai = ∅ for |∅NB| ≤ i < |A|, it follows that there exists nj′ , for j′ < j, such that 2M2 ≤1184

nj′ < |B| +M and a (sub)sequence (⃝ij′Aj′ → Aj′+1, nj′+1), . . . , (⃝ij−1Aj−1 → Aj , nj) is1185

in D. We expand this subsequence by taking all (⃝ijAj → Aj+1, nj), . . . , (⃝ij′′−1Aj′′−1 →1186

Aj′′ , nj′′), such that j′′ is the first after j such that nj′′ = nj′ . Let D = D1D2D3, where1187

D2 is the expanded sequence above. By applying Proposition 22, we obtain a derivation1188

D1D
′
2D3 of A at ℓ, where all numbers nj in D1D

′
2 are 2M2 ≤ nj ≤ nj′ + 2M2 < |A|. If1189

the latter above was the case, i.e., nj < 2M2, we analogously obtain a derivation of A at ℓ,1190

where all numbers nj in D1D
′
2 are 0 ≤ nj′ − 2M2 ≤ nj < |B| +M . By continuing to apply1191

Proposition 22 to D3 a required number of times, we obtain the derivation of A at ℓ with all1192

the numbers as required in (a).1193

Now the proof of Lemma 21 is complete. Indeed, there is an immediate correspondence1194

between runs of AΞ
O on A and derivations of L by O and A whose all numbers nj are such1195

that 0 ≤ nj < |A|. ❑1196

We now return to the proof of Theorem 20. Define a 2NFA AΞ
q = (2Ξ, Q′, Q0, δ

′, F ),1197

where Q′ = Q ∪ {q1}, F = {q1}, and δ′ = δ ∪ {qB →a,0 q1, q1 →a,1 q1 | a ∈ 2Ξ}. Using1198

Lemma 21, we obtain:1199

LΞ(q) = {a ∈ Σ∗
Ξ | ∅Na∅N ∈ L(AΞ

q )}. (29)1200

However, we need an automaton A′, which can be constructed in polynomial space, such1201

that LΞ(q) = L(A′) and L-definability of A′ can be decided in PSpace. Consider the1202

DFA A′ from Section 4.2 that recognises the language of a 2NFA A. We construct A′
1203

from AΞ
q as in that section except the definition of q′

0 and F ′, which is now as follows:1204

q′
0 = ({(q0, q) ∈ brr(∅N )}, brr(∅N )) and F ′ = {(Blr, Brr) | (q0, q1) ∈ Blr ◦ X}, where X1205

is the reflexive and transitive closure of bll(∅N ) ◦ Brr. Using (29), it is easily shown that1206

LΞ(q) = L(A′) and A′ is clearly constructible from q in PSpace. That L-definability of A′
1207

is decidable in PSpace, follows from the proof of Theorem 11. ❑1208

▶ Theorem 23. For any L ∈ {FO(<),FO(<,≡),FO(<,MOD)}, deciding L-rewritability of1209

linear LTL⃝
horn OMAQs over Ξ-ABoxes is PSpace-complete.1210
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Proof. By Proposition 15 (i), it is sufficient to show the lower bound result for specific linear1211

LTL⃝
horn OMAQs q(x) = (O, A(x)). We provide a reduction from the problem of deciding L1212

rewritability of a DFA A = (Q,Σ, δ, q0, F ). We set Ξ = Σ ∪ {s}, for a fresh symbol s, and1213

construct O with idb(O) ⊆ {q̄ | q ∈ Q} ∪ {A,X} such that1214

L(A) is L-definable iff LΞ(q(x)) is L-definable. (30)1215

Let O contain the axioms s → ⃝
F q̄0, q̄ → A, for all q ∈ F , q̄ ∧ a → ⃝

F r̄, for all q →a r1216

in δ, a ∧ b → ⊥ for all distinct a, b ∈ Ξ, and s → ⃝
FX, X → ⃝

FX, X ∧ s → ⊥. Let 2Ξ
11217

be the set of all B ∈ 2Ξ with |B| ≤ 1, i..e., 2Ξ
1 = {∅} ∪

⋃
a∈Ξ{{a}}, and let 2Ξ

>1 be 2Ξ \ 2Ξ
1 .1218

We analogously define 2Σ
1 and 2Σ

>1. To prove (30), observe that (recall that the alphabet of1219

LΞ(q(x)) is 2Ξ ∪ (2Ξ)′):1220

LΞ(q(x)) ={U{s}{u0} . . . {un}B′V | U, V ∈ (2Σ
1 )∗, u0 . . . un ∈ L(A), B′ ∈ (2Σ

1 )′}∪1221

{UB′V | |Ui| > 1 for some i, |B| > 1, or |Vi| > 1 for some i}∪1222

{UB′V | s occurs at distinct positions of UB′V }1223
1224

We now construct a DFA A′ such that L(A′) = LΞ(q(x)). It is straightforward to verify that1225

the following A′ with Q ⊆ Q′
1226

1227

can be taken. (The grey box shows Q, where the state q0 is initial in A and the states qf1 , . . . ,1228

qfn are final. The transitions between q, q′ ∈ Q in A′ are defined by taking q →{a} q
′ iff1229

q →a q
′ in A, while all the other transitions in A′ are shown in the picture. As usual, when1230

an arrow is marked by a sets of symbols from 2Ξ ∪ (2Ξ)′, the corresponding transition holds1231

for each symbol in the set.) We also observe that:1232

q ∼ q′ in A iff q ∼ q′ in A′, for all q, q′ ∈ Q, (31)1233

q ̸∼ q′ in A′, for all q ∈ Q, q′ ∈ Q′ \Q. (32)1234
1235

We now show that L(A) is L-definable iff L(A′) is L-definable. We prove the direction1236

(⇒), while the opposite direction is easier and left to the reader. Let first L = FO(<) and1237
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suppose L(A′) is not FO(<) definable. By Theorem 6 (i), there exists a reachable state1238

q in A′, a word U ∈ (2Ξ ∪ (2Ξ)′)∗ and k, satisfying the corresponding conditions. By the1239

structure of A′, it is clear that the state q is in Q and U = {u0} . . . {un}, for some u ∈ Σ∗,1240

and δ′
Ui(q) ∈ Q, for all i ≤ k. Therefore, we have q in A such that δuk (q) = q. By (31),1241

it also follows that q ̸∼ δu(q) in A, and so L(A) is not FO(<)-definable. The proof for1242

L = FO(<,≡) is analogous and left to the reader. Let now FO(<,MOD) and suppose L(A′)1243

is not FO(<,MOD) definable. By Theorem 6 (iii), there exists a reachable state q in A′
1244

and U, V ∈ (2Ξ ∪ (2Ξ)′)∗ such that the corresponding conditions are satisfied. Consider the1245

sequence of states q, δ′
U (q), δ′

U2(q), . . . and observe δ′
Ui(q) ∼ δ′

Ui+2(q) and δ′
Ui(q) ̸∼ δ′

Ui+1(q)1246

(in A′), for all i ≥ 0. By the structure of A′ and (32), it follows that all δ′
Ui(q) are in Q and1247

U = {u0} . . . {un}, for some u ∈ Σ∗. Also, because q ∼ δ′
V k (q) ∼ δ′

(UV )l(q) and (32), it follows1248

that δ′
V (q), δ′

(UV )(q) ∈ Q and V = {v0} . . . {vm}, for some v ∈ Σ∗. Finally, using (31) and an1249

observation that δ′
X(q) = δx(q), for all words X = {x0} . . . {xn} and x ∈ Σ∗, we conclude1250

that A satisfies condition (iii) of Theorem 6, and so L(A) is not FO(<,MOD)-definable. ❑1251

6.2 Linear OMPQs1252

By Lemma 14 and Proposition 15, it suffices to prove this result for Boolean OMPQs in the1253

given class without occurrences of ⊥. Let q = (O,κ) be a such an OMPQ. We start with1254

the criterion and algorithm for FO(<)-definability, and address FO(<,≡)-definability after.1255

The set of all types for q is denoted by T q. Given a model I of O, we denote by τI(n), for1256

n ∈ Z, the type for q that holds in I at n. In the rest of this section, we assume and κ of1257

the form 3P3Fκ′. This is w.l.o.g. by (26).1258

▶ Lemma 24. Let q = (O,κ) be an OMPQ with an LTL2⃝
horn-ontology O. Then q is not1259

FO(<)-rewritable over Ξ-Aboxes iff there exist such ABoxes A, B, D and k ≥ 2 such that the1260

following conditions hold:1261

(i) ¬κ ∈ τCO,ABkD
(|A| − 1) and τCO,ABkD

(|A| − 1) = τCO,ABkD
(|ABk| − 1);1262

(ii) κ ∈ τCO,ABk+1D
(|AB| − 1) and τCO,ABk+1D

(|AB| − 1) = τCO,ABk+1D
(|ABk+1| − 1).1263

Proof. Consider the DFA A over the alphabet 2Ξ with the set of states Q = 2T q , where1264

q−1 = T q is the initial state and the set of final states is F = {q | κ ∈ τ, for all τ ∈ q}.1265

We expand the relation →a defined on T q in Proposition 5 to Q by setting δ(q, a) = {τ |1266

τ ′ →a τ for some τ ∈ q}. Clearly, A is deterministic. In fact, A is a determinasation of1267

the NFA used in Proposition 5 with some simplifications. We write q ⇒A q′ to say that,1268

having started in state q and having read an ABox A, the DFA A is in state q′. We observe1269

the following important property of A. Let q−1 ⇒A0 q0 . . . qn−1 ⇒An qn be a run of A on1270

A = A0 . . .An, and let q̄i = {τ ∈ qi | τ →Ai+1...An
τ ′, for some τ ′ ∈ qn}. Then1271

τCO,A(i) =
⋂
q̄i, for − 1 ≤ i ≤ n. (33)1272

1273

Similarly to the proof of Proposition 5, one can check that LΞ(q) = L(A).1274

(⇒) Suppose q is not FO(<)-rewritable. By Lemma 6 (i), it follows that there exist1275

ABoxes A, B, D and k ≥ 2 such that q−1 ⇒A q0, q0 ⇒B q1, q0 ⇒k
B q0 and q0 ⇒D q′

0,1276

q1 ⇒D q′
1, for some q′

0, q
′
1 ∈ Q such that q′

0 ̸∈ F and q′
1 ∈ F . Since q′

0 ̸∈ F , by (33), we1277

have ¬κ ∈ τCO,ABkD
(|A| − 1) = τCO,ABkD

(|ABk| − 1) as required in (i). To show (ii), we1278

observe that q′
1 ∈ F by (33) implies κ ∈ τCO,ABk+1D

(|AB| − 1) = τCO,ABk+1D
(|ABk+1| − 1),1279

as required.1280

(⇐) Assuming (i) and (ii), let q0, q1, q2 be states in A with q−1 ⇒A q0 ⇒B q1 ⇒Bk−11281

q2 ⇒B q′
2. Let q3, q

′
3 be such that q2 ⇒D q3 and q′

2 ⇒D q′
3. It follows by (33) that q3 ̸∈ F and1282
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q′
3 ∈ F . Observe that, if we had q0 = q2, we could conclude that q is not FO(<)-rewritable,1283

as the conditions of aperiodicity for A (see the proof of (⇒)) would be satisfied. Since1284

we are not guaranteed that, we use the following property of the canonical models that1285

follow from (i) and (ii): (a) τCO,ABkD
(|ABk| − 1) = τCO,ABkj D

(|ABkj | − 1), for any j ≥ 1; (b)1286

τCO,ABk+1D
(|ABk+1| − 1) = τCO,ABkj+1D

(|ABkj+1| − 1), for any j ≥ 1. Take some i, j ≥ 1 that1287

satisfy q0 ⇒ABki q4 ⇒B q′
4 ⇒Bkj q4 ⇒B q′

4, for some q4, q
′
4. By (i), (ii), (a) and (b), we have1288

that q5 ̸∈ F and q′
5 ∈ F for such q5 and q′

5 that q4 ⇒D q5 and q′
4 ⇒D q′

5. Therefore, q is not1289

FO(<)-rewritable, as the conditions of aperiodicity for A are satisfied (as in the (⇒)-proof1290

with A, B, D and k being, respectively, ABki, B, D and kj). ❑1291

▶ Corollary 25. Let q = (O,κ) be an OMPQ with an LTL2⃝
horn-ontology O. If there exist1292

Ξ-ABoxes A,B,D and k ≥ 2 satisfying conditions (i) and (ii) above, then there exist A,B,D1293

and k with |A|, |D|, k ≤ 2O(|q|) satisfying these conditions.1294

Proof. First, we show that there is A with |A| ≤ 2|T q|2. Indeed, consider the sequence

(CO,ABkD(0), CO,ABk+1D(0)), . . . , (CO,ABkD(|A| − 2), CO,ABk+1D(|A| − 2)).

Suppose, the i-th member of this sequence is equal to its j-th member, for i < j, and1295

denote A<iA≥j by A′. We clearly have CO,A′BkD(|A′| − 1) = CO,ABkD(|A| − 1) and1296

CO,A′Bk+1D(|A′B| − 1) = CO,ABkD(|AB| − 1), and conditions (i) and (ii) are satisfied with A′
1297

in place of A. The rest of the argument is straightforward. Similarly it is shown that there1298

exists D with |D| ≤ 2|T q|2. To show that there exists k ≤ 2|T q|2, we consider the sequence1299

1300

(CO,ABkD(|AB| − 1), CO,ABk+1D(|AB2| − 1)), . . . ,1301

(CO,ABkD(|ABk−1| − 1), CO,ABk+1D(|ABk| − 1)).1302
1303

Clearly, if the i-th member of this sequence is equal to its j-th member, for i < j, then1304

conditions (i) and (ii) are satisfied with k − (j − i) in place of k. ❑1305

Observe that we do not claim that there exists B with |B| ≤ 2O(|q|) However, this is the1306

case for linear LTL2⃝
horn-ontologies, as follows from the proof of Theorem 27.1307

Let O be in normal form, as in the proof of Theorem 20. Consider the 2NFA AΞ
O from1308

that proof. Throughout this section, b•, for • ∈ {lr, rr, rl, ll}, and b are defined with respect1309

to AΞ
O. It will be convenient to define each b•(w) as an identity relation on Q, for the empty1310

string w, and b(w) is defined accordingly.1311

▶ Lemma 26. Let A be an ABox of the form ∅NB∅N and O a linear LTL2⃝
horn-ontology. Let1312

X(ℓ) be the reflexive and transitive closure of bll(A>ℓ) ◦ brr(A≤ℓ). Then υCO,A(ℓ) = {A |1313

(q0, A) ∈ blr(A≤ℓ) ◦X(ℓ)}, for any N ≤ k < |A| −N .1314

Proof. Easily follows from Lemma 21. Observe that there exists a run (q0, 0), . . . , (q, ℓ), (qL, i)1315

of AΞ
O on A iff (q0, qL) ∈ blr(A≤ℓ) ◦X(ℓ), for all ℓ < |A|. ❑1316

▶ Theorem 27. Deciding FO(<)-rewritability of OMPQs q = (O,κ) with a linear LTL⃝
horn-1317

ontology O over Ξ-ABoxes can be done in PSpace.1318

Proof. By Theorem 24 and Corollary 25, we need to check the existence of A,B,D, k ≥ 2,1319

such that |A|, |D|, k ≤ 2O(|q|) and conditions (i) and (ii) hold. Without loss of generality, we1320

assume that A has a prefix ∅N and D has a suffix ∅N .1321

We start by guessing numbers NA = |A|, ND = |D| and k. We guess two types τ0 and τ1
that represent, respectively, τCO,ABkD

(N) and τCO,ABkD
(|A| − 1), and three types τ ′

0, τ ′′
0 , τ ′

1



Ryzhikov, Savateev, Zakharyaschev 23:35

that represent, respectively, τCO,ABk+1D
(N), τCO,ABk+1D

(|A| − 1), and τCO,ABk+1D
(|AB| − 1).

Next, we compute b(∅N ) and guess b(A), b(B), b(D). Note that, given b(B), we are able to
compute b(X ) for each X ∈ {Bi | 1 ≤ i ≤ k + 1}. Now, we guess A—symbol by symbol—by
means of a sequence of pairs

(b(A≤0), b(A>0)), . . . , (b(A≤NA−1), b(A>NA−1))

such that b(A≤i)·b(A>i) = b(A), for all i, and there are ai ∈ 2Ξ with b(A≤i+1) = b(A≤i)·b(ai)
and b(A>i) = b(ai) · b(A>i+1). Moreover, we require that ai = ∅ for i < N . Observe that
the pairs of the sequence with i ≥ N together with b(B) and b(D), by Lemma 26, give us
υCO,ABkD

(i). When we compute υCO,ABkD
(N), we check whether it is subsumed by τ0 (if not,

the algorithm terminates with an answer no). Furthermore, we need to check the following
condition:

κ′ ∈ τCO,{A(0)|A∈τ0}(0) implies κ′ ∈ τ0,

for each κ′ of the form 2Pκ′′, 3Pκ′′ from subq (if not, the algorithm terminates and returns1322

no). We have now checked that the type τ0 is potentially guessed correctly (subject to1323

further checks). We can apply the same method to check that τ ′
0 is potentially guessed1324

correctly. For the remaining N < i < NA, since τCO,ABkD
(i) is determined by υCO,ABkD

(i)1325

and τCO,ABkD
(i − 1), we are able to compute τCO,ABkD

(|A| − 1) or obtain a conflict, e.g.,1326

2FA ∈ τCO,ABkD
(i− 1) and ¬A ∈ υCO,ABkD

(i). In the latter case, the algorithm terminates1327

answering no. In the former case, we check if τCO,ABkD
(|A| − 1) is equal to τ1, in which case1328

τ1 is guessed correctly, and if not, the algorithm terminates answering no. Analogously it is1329

checked if τ ′′
0 is guessed correctly using CO,ABk+1D.1330

Now, we show how to check that all the types τCO,ABkD
(i), for |A| ≤ i < |ABk|, are correct,1331

that τ ′
1 is guessed correctly, and that all the types τCO,ABk+1D

(i), for |AB| ≤ i < |ABk+1| are1332

correct. We only demonstrate the algorithm for τCO,ABkD
(i). Observe that κ′ ∈ τCO,ABkD

(i)1333

iff κ′ ∈ τCO,ABkD
(j) iff κ′ ∈ τ1, for each κ′ of the form 2κ′′, 3κ′′ from subq and all1334

|A| − 1 ≤ i, j < |ABk|. To do the required check, we need to guess a sequence of pairs1335

(b(B≤0), b(B>0)), . . . , (b(B≤|B|−1), b(B>|B|−1)) (34)1336

such that b(B≤i) ·b(B>i) = b(B), for all i, and there are a ∈ 2Ξ with b(B≤i+1) = b(B≤i) ·b(a)1337

and b(B>i) = b(a) · b(B>i+1). While we do not have any bound on |B| yet (unlike on |A|, |D|1338

and k), we can easily observe that any sequence (34) with repeating members at positions1339

0 ≤ i′ < i′′ ≤ |B| − 1 is equivalent for the purposes of this proof to the sequence with all the1340

members i′, . . . , i′′ − 1 removed. Since there are ≤ 2O(|q|) distinct pairs as above, it follows1341

that |B| ≤ 2O(|q|), if B required by Lemma 24 exists. By Lemma 26, using an element i1342

of this sequence, we are able to compute υCO,ABkD
(|ABj | + i), for all 0 ≤ j < k. We only1343

need to check that such an atomic type is not in conflict with the modal formulas in τ1,1344

e.g., 2PA ∈ τ1 and ¬A ∈ υCO,ABkD
(|ABj | + i). If a conflict is detected for some i and j,1345

the algorithm terminates answering no. Here, we also verify that τCO,ABkD
(|ABk| − 1) = τ11346

(respectively, if τCO,ABk+1D
(|ABk+1| − 1) = τ ′

1). Finally, we need to check that all the types1347

τCO,ABkD
(|ABk|+i) (respectively, in τCO,ABk+1D

(|ABk+1|+i)), are correct, for 0 ≤ i < ND −N .1348

The details are left to the reader.1349

❑1350

We now turn to FO(<,≡)-definability.1351

▶ Lemma 28. Let q = (O,κ) be an OMPQ with an LTL2⃝
horn-ontology O. Then q is not1352

FO(<,≡)-rewritable over Ξ-Aboxes iff there exist such ABoxes A,B,D and k ≥ 2, such1353
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that (i) and (ii) from Lemma 24 hold and there exist ABoxes W, U , such that B = UW,1354

|W| = |U|,1355

(iii) τCO,ABkD
(|ABi| − 1) = τCO,ABkD

(|ABiU| − 1), for all i < k, and1356

(iv) τCO,ABk+1D
(|ABi| − 1) = τCO,ABk+1D

(|ABiU| − 1), for all i, 1 ≤ i ≤ k.1357

Proof. (⇒) Suppose q is not FO(<,≡)-rewritable. By Theorem 6 (ii), there exist the ABoxes
A,W,U ,D with |W| = |U| and k ≥ 2 such that

q−1 ⇒A q0 ⇒U q0 ⇒W q1 ⇒U q1 ⇒W · · · ⇒W qk−1 ⇒U qk−1 ⇒W q0,

q0 ⇒D r0, q1 ⇒D r1 for some r0, r1 ∈ Q such that r0 ̸∈ F . That (i) and (ii) are satisfied for1358

B = UW is shown as in the proof of Lemma 24. Then (iii) and (iv) easily follow from (33).1359

(⇐) Suppose (i)–(iv) hold and E(i0, . . . , ij) = U i0W . . .U ij W. Let Fj′(i0, . . . , ij) be the1360

prefix of E(i0, . . . , ij) of the form U i0W . . .U ij′−1WU ij′ , for j′ ≤ j. By the properties of the1361

canonical models, we then obtain the following, for 0 ≤ n ≤ m and 0 ≤ ℓ < k:1362

(a) τCO,AE(i0,...,ikm+k−1)D (|AFkn+ℓ(i0, . . . , ikm+k−1)|−1) = τCO,ABkD
(|ABℓ|−1), for all n, ℓ ≥1363

0;1364

(b) τCO,AE(i0,...,ikm+k−1,i0)D (|AFkn+ℓ+1(i0, . . . , ikm+k−1, i0)| − 1) = τCO,ABk+1D
(|ABℓ+1| − 1).1365

Take the DFA A from the proof of Lemma 24, assume without loss of generality that |Q| ≥ 3,1366

and, for m ≥ 0, consider the sequence1367

1368

q−1 ⇒AU |Q|!−1 q0 ⇒U |Q|! q′
0 ⇒W q′′

0 ⇒U |Q|!−1 q1 ⇒U |Q|! q′
1 ⇒W q′′

1 ⇒U |Q|!−1 . . .1369

qkm+k−1 ⇒U |Q|! q′
km+k−1 ⇒W qkm+k.1370

1371

Clearly, qi = q′
i for 0 ≤ i < km+k. By taking an appropriate m, as in the proof of Lemma 24,

we can find i and j, such that

q−1 ⇒AU |Q|!−1(WU |Q|!−1)ik r0 ⇒WU |Q|!−1 r1 ⇒WU |Q|!−1 · · · ⇒WU |Q|!−1 rjk+k−1 ⇒WU |Q|!−1 r0

and rℓ ⇒U |Q|! rℓ, for 0 ≤ ℓ < jk + k. It can be readily shown using (a) and (b) that q′
0 ̸∈ F1372

and q′
1 ∈ F for such q′

0 and q′
1 that r0 ⇒D q′

0 and r1 ⇒D q′
1. Now, we have found a set of1373

states in A that satisfies the condition of Theorem 6 (ii) with w = WU |Q|!−1 and u = U |Q|!.1374

Therefore, q is not FO(<,≡)-rewritable. ❑1375

▶ Theorem 29. Deciding FO(<,≡)-rewritability of OMPQs q = (O,κ) with a linear LTL⃝
horn-1376

ontology O over Ξ-ABoxes can be done in PSpace.1377

Proof. The proof relies on Theorem 6 (ii). Clearly, Corollary 25 holds providing the bound1378

of 2O(|q|) on |A|, |D| and k. The same bound on |W|, |U| and |B| follows from the same1379

argument as in the proof of Theorem 27 and a straightforward modification of that proof1380

gives a PSpace algorithm we are after. ❑1381

The criterion of Theorem 6 (iii) is harder to transform to a PSpace-checkable condition1382

on canonical models and ABoxes, and the complexity of deciding FO(<,MOD)-rewritability1383

of linear OMPQs remains open at the moment.1384

7 FO(<)-rewritability of LTL⃝
krom OMAQs and LTL⃝

core OMPQs1385

Our next aim is to look for non-trivial classes of OMQs deciding FO-rewritability of which1386

could be ‘easier’ than PSpace. Syntactically, the simplest type of axioms (5) are binary1387

clauses: C1 → C2 and C1 ∧C2 → ⊥, known as core axioms, which together with C1 ∨C2 form1388
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the class Krom. In the atemporal case, the W3C standard language OWL 2 QL, designed1389

specifically for ontology-based data access, allows core clauses only and uniformly guarantees1390

FO-rewritability [3, 19].1391

As we saw in the proof of Theorem 19, OMPEQs with disjunctive axioms can simulate1392

LTL⃝
horn OMAQs, and so are too complex for the purposes of this section. On the other1393

hand, LTL⃝
krom OMAQs and LTL⃝

core OMPQs are all FO(<,≡)-rewritable [7]. Below, we1394

focus on deciding FO(<)-rewritability of OMQs in these classes.1395

▶ Theorem 30. Deciding FO(<)-rewritability of Boolean and specific LTL⃝
krom OMAQs over1396

Ξ-ABoxes is coNP-complete.1397

Proof. Suppose q = (O, A) is an LTL⃝
krom OMAQ and O is consistent. Using the form of1398

Krom axioms, one can show [7] that, for any ABox A and l ∈ Z, we have (O,A) |= A(l) iff1399

one of the following holds: (i) there are k ≤ l and B(k) ∈ A such that O |= B → ⃝l−k
F A;1400

(ii) there are k > l and B(k) ∈ A such that O |= B → ⃝k−l
P A; (iii) O and A are inconsistent,1401

i.e., there exist k1 ≤ k2, B(k1) ∈ A and C(k2) ∈ A such that O |= B → ⃝k2−k1
F ¬C.1402

Let lit(q) = {C,¬C | C ∈ sig(q)}. For any L1, L2 ∈ lit(q), we can construct a unary NFA1403

AL1L2 of size O(|q|) that accepts LL1L2 = {an | O |= L1 → ⃝n
F L2, n ≥ 0}. The set of its1404

states is lit(q), L1 is the initial state, the set of accepting states is {L2}, and the transitions1405

are the following:1406

– L →a L
′ if O |= L → ⃝

FL
′;1407

– L →ε L
′ if O |= L → L′.1408

Let Ξ∃
A = {B ∈ Ξ | O, {B(0)} |= ∃xA(x)} and Ξ∀

A = {B ∈ Ξ | O, {B(0)} |= ∀xA(x)}.1409

▶ Lemma 31. (i) The language LΞ(q) is FO(<)-definable iff, for all B,C ∈ Ξ \ Ξ∃
A, the1410

language LB¬C is FO(<)-definable.1411

(ii) The language LΞ(q(x)) is FO(<)-definable iff the following holds:1412

– for all B ∈ Ξ, the languages LBA and L¬A¬B are FO(<)-definable;1413

– for all B,C ∈ Ξ \ Ξ∀
A such that one of the LBA and L¬A¬C is finite, the language LB¬C1414

is FO(<)-definable.1415

Proof. (i) (⇒) If LΞ(q) is FO(<)-definable then so is LΞ(q) ∩ L({B}∅∗{C}), for any B,C.1416

For B,C /∈ Ξ∃
A, we have {B}∅n{C} ∈ LΞ(q) iff O |= B → ⃝n+1

F ¬C.1417

(⇐) For a Ξ-ABox A, we have wA ∈ LΞ(q) iff either there is B(k) ∈ A, for some B ∈ Ξ∃
A,1418

or there are B,C ∈ Ξ \ Ξ∃
A and k ≤ l such that B(k), C(l) ∈ A and O |= B → ⃝k−l

F ¬C. By1419

assumption, all of these conditions are FO(<)-definable.1420

(ii) (⇒) If LΞ(q(x)) is FO(<)-definable, then so is LΞ(q(x)) ∩ L({B}∅∗∅′) (see the1421

definition of LΞ(q(x)) in Section 2) and LΞ(q(x)) ∩ L(∅′∅∗{B}), for any B ∈ Ξ. We have1422

{B}∅n∅′ ∈ LΞ(q(x)) iff O |= B → ⃝n+1
F A and ∅′∅∗{B} ∈ LΞ(q(x)) iff O |= B → ⃝n+1

P A.1423

Suppose B,C ∈ Ξ\Ξ∀
A and LBA is finite. There is l ∈ Z such that O, {C(0)} ̸|= A(l) and there1424

is k such that k > n for all an ∈ LBA. For m > k+ |l|, we have O, {B(0), C(m)} |= A(m+ l)1425

iff O |= B → ⃝m
F ¬C. The case when L¬A¬C is finite is similar.1426

(⇐) One can prove by induction on the construction of star-free expressions that every1427

star-free language over a unary alphabet is either finite or cofinite. Since, for all B ∈ Ξ, the1428

languages LBA and L¬A¬B are FO(<)-definable, they all are star-free. Therefore, there is1429

n ∈ N such that, for any B and n1, n2 > n, we have an1 ∈ LBA iff an2 ∈ LBA and similarly1430

for L¬A¬B .1431

For a Ξ-ABox A and k ∈ Z, we have wA,k ∈ LΞ(q(x)) iff either there is B(l) ∈ A with1432

l ≤ k and O |= B → ⃝l−k
F A, or there is B(l) ∈ A with l > k and O |= B → ⃝k−l

P A, or there1433

are B(k), C(l) ∈ A such that k− l < 2n and O |= B → ⃝k−l
F ¬C, or there are B(k), C(l) ∈ A1434
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such that k − l ≥ 2n, LBA and L¬A¬C are infinite, or B(k), C(l) ∈ A such that k − l ≥ 2n,1435

one of LBA and L¬A¬C is finite and O |= B → ⃝k−l
F ¬C. All of these conditions are FO(<)1436

definable. (In the fourth case, since LBA is FO(<)-definable and infinite, O |= B → ⃝n
F 2FA1437

and, similarly, O |= C → ⃝n
P 2PA; therefore, O, {B(k), C(l)} |= ∀xA(x) and we do not need1438

to check for inconsistency.) ❑1439

Thus, to check FO(<)-rewritability of q and q(x), it suffices to check FO(<)-definability,1440

emptiness and finiteness of the languages of the form LL1L2 . Emptiness and finiteness can1441

be checked in NL. Using [50, Theorem 6.1], one can show that deciding FO(<)-definability1442

of the language of a unary NFA is coNP-complete, which gives the required upper bound1443

for deciding FO(<)-rewritability of both Boolean and specific LTL⃝
krom OMAQs.1444

To show the matching lower bound, for any unary NFA A = (Q, {a}, δ, q0, F ) without1445

ε-transitions, we define an LTL⃝
core ontology OA with the axioms X → ⃝

F q0, q ∧ Y → ⊥,1446

for every q ∈ F , and q → ⃝
Fp, for every transition q →a p. The OMAQs q = (OA, A) for1447

A /∈ Q ∪ {X,Y } and q(x) = (OA, A(x)) are FO(<)-rewritable over {X,Y }-ABoxes iff L(A)1448

is star-free because O,A |= A(l), for an {X,Y }-ABox A, iff A is inconsistent with OA. An1449

{X,Y }-ABox A is inconsistent iff there are X(i), Y (j) ∈ A with aj−i−1 ∈ L(A). ❑1450

Our next result deals with a weaker (Horn∩Krom) ontology language but more expressive1451

queries.1452

▶ Theorem 32. Deciding FO(<)-rewritability of Boolean and specific LTL⃝
core OMPEQs over1453

Ξ-ABoxes is Πp
2 -complete.1454

Proof. By Proposition 15 (ii) and Lemma 14, it is enough to consider Boolean LTL⃝
core1455

OMPEQs q = (O, q) with ⊥-free O. We further assume, without loss of generality, that all1456

of the axioms have the following forms: A → B, A → ⃝
FB, or A → ⃝

PB, for atomic A and1457

B.1458

▶ Lemma 33. For v ∈ Σ∗
Ξ, deciding whether v ∈ LΞ(q) can be done in NP.1459

Proof. We prove that, given an ABox A and j ∈ Z, checking O,A |= κ(j) is in NP.1460

The proof is by induction on the construction of κ. If κ is atomic and O,A |= κ(j) then1461

there is B(i) ∈ A such that O |= B → ⃝j−i
F A or O |= B → ⃝i−j

P A, which can be checked in1462

polynomial time. The cases κ = κ1 ∧ κ2 and κ = κ1 ∨ κ2 are obvious.1463

Let κ = 3Fκ1. If O,A |= κ(j), then O,A |= κ1(i) for some i > j. By the structure of the1464

canonical models [7], the required i can be found in the interval j < i < |j| + max A + 2O(|O|).1465

So it is of polynomial length and we can non-deterministically guess it along with the1466

necessary certificate proving that O,A |= κ1(i), which exists by IH. The case of κ = 3Pκ1 is1467

symmetric.1468

It remains to recall from [7] that the certain answer to q over A is yes iff there exists1469

j ∈ [−O(2O),max A +O(2O)] such that O,A |= κ(j). ❑1470

Using criteria (i)–(iii) from the proof of Theorem 30, the assumption above, and the1471

structure of κ, we obtain that O,A |= ∃κ(x) iff O,A′ |= ∃κ(x), for some A′ ⊆ A with1472

|A′| ≤ |κ|. We reformulate this observation in slightly different terms. Let B be the set of1473

words w = w1 . . . wk ∈ Σ∗
Ξ such that, for every i, we have |wi| ≥ 1 and |w1| + · · · + |wk| ≤ |κ|.1474

With every such w we associate the language Lw = L(∅∗w1∅∗ . . . ∅∗wk∅∗) ∩ LΞ(q). For1475

Σ∗
q-words v and v′, we write v′ ≤ v if they are of the same length and v′

i ⊆ vi, for all i.1476

▶ Lemma 34. For every v ∈ Σ∗
Ξ, we have v ∈ LΞ(q) iff there is v′ ≤ v such that v′ ∈ Lw1477

for some w ∈ B.1478
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We also require the following:1479

▶ Lemma 35. A regular language

L ⊆ L(a∗b1a
∗b2a

∗ . . . a∗bka
∗)

with a /∈ {b1, . . . , bk} is star-free iff L can be defined by a regular expression of the form

α =
n⋃
i=1

αi,0b1αi,1 . . . αi,k−1bkαi,k

for some n ∈ N, where each αi,j is either alij or alija∗, for some lij ∈ N.1480

Proof. (⇐) All individual members of the union are concatenations of star-free languages.1481

Therefore, L is star-free because star-free languages are closed under concatenation and1482

union.1483

(⇒) The proof is by induction on k. For k = 0, L ⊆ L(a∗) is either finite or cofinite.1484

If it is finite, then L =
⋃m
j=1 a

ij ; otherwise, L =
⋃m
j=1 a

ij ∪ {an | n > im}, and so1485

L = L(aima∗ ∪
⋃m−1
j=1 aij ).1486

Let k > 0. Let A = (Q,Σ, δ, q0, F ) be a minimal DFA accepting L. Let B = {q ∈ Q |
∃i δai(q0) = q} and let B′ = {q ∈ B | δ(q, b1) is defined}. For a non-trash p ∈ B′, let Lp be
the language accepted by the automaton (B, {a}, δ|B , I, {pB}) and let L′

p be the language ac-
cepted by the automaton (Q/B,Σ, δ|Q/B , δ(p, b1), F ). Clearly, L′

p ⊆ L(a∗b2a
∗b3a

∗ . . . a∗bka
∗)

and both Lp and L′
p are star-free. Therefore, by IH, there are a regular expression

⋃np

i=1 α
p
i,0

defining Lp and a regular expression
⋃n′

p

j=1 α
p
j,1b2α

p
j,2 . . . α

p
j,k−1bkα

p
j,k defining L′

p. Since
L =

⋃
p∈B(Lp · {b1} · L′

p), the language L is defined by

⋃
p∈B

np⋃
i=1

n′
p⋃

j=1
αpi,0b1α

p
j,1b2α

p
j,2 . . . α

p
j,k−1bkα

p
j,k.

This completes the proof of the lemma. ❑1487

▶ Lemma 36. The language LΞ(q) is star-free iff Lw is star-free, for every w ∈ B.1488

Proof. (⇒) If LΞ(q) is star-free, then so is Lw because L(∅∗w1∅∗ . . . ∅∗wk∅∗) is star-free1489

and star-free languages are closed under intersection.1490

(⇐) Suppose the language Lw is star-free. By Lemma 35, Lw is defined by the expression
αw =

⋃nw

i=1 αi,0w1αi,1 . . . αi,k−1wkαi,k for some nw ∈ N, where each αi,j is either ∅l or ∅l∅∗.
Let α′

i,j = σl or σl∅c (we use ∅ to denote the letter of ΣΞ and ∅ to denote the empty
language), respectively, where σ =

⋃
a∈Σq

a. Let

α′
w =

nw⋃
j=1

(
α′
j,0(

⋃
w1⊆a

a)α′
j,1 . . . α

′
j,k−1(

⋃
wk⊆a

a)α′
j,k

)
.

We see that α′
w is star-free and L(α′

w) = {v ∈ Σ∗
q | ∃v′ ∈ Lw v′ < v}. It follows that1491

L(
⋃
w∈B α

′
w) = LΞ(q) and LΞ(q) is star-free. ❑1492

For w = w1 . . . wk ∈ B and I = (i0, . . . , ik), let vw,I = ∅i0w1∅i1 . . . wk∅ik . For c ∈ N, let1493

I≤c be I with all ij > c replaced with c.1494

▶ Lemma 37. Lw is star-free iff vw,I ∈ LΞ(q) just in case vw,I≤c
∈ LΞ(q), for all I, where1495

c = 2|sig(q)|+|κ| + 1.1496
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Proof. (⇐) For w = w1 . . . wk, let Iw = {I = (i0, . . . , ik) | max il ≤ c, vw,I ∈ L(q)}. It is a1497

finite set. For each I ∈ Iw, let αI = αI,0b1αI,1 . . . bkαI,k where αI,j = ∅j if j < c and ∅c∅∗ if1498

j = c. We see that Lw is defined by
⋃
I∈Iw

αI , and so it is star-free.1499

(⇒) Consider αw from Lemma 36. Each αi,j is either ∅l or ∅l∅∗. Choose lmax to be1500

bigger than all of the l. We see that vw,I ∈ LΞ(q) iff vw,I≤lmax
∈ LΞ(q).1501

Consider ABox A corresponding to vw,I≤c
and choose l such that il = c. There are two1502

places in the part of the canonical model corresponding to il where exactly the same atomic1503

concepts and subformulas of κ are true. Let them be l1 and l2. If we ‘repeat’ the [l1 + 1, l2]1504

part m times, we obtain exactly the canonical model for the ABox corresponding to vw,I′1505

where I ′ has c+ (m− 1)(l2 − l1) in place of il.1506

l1 l2

l1 l2
1507

We can choose m so that c + (m − 1)(l2 − l1) > lmax. We can do the same for all ij = c1508

in I<c and all ij ≥ c in I. So the words vw,I<lmax
, vw,I<c and vw,I are in or out of Lw1509

simultaneously. ❑1510

We are now in a position to show that deciding FO(<)-rewritability of q can be done in1511

Πp
2. Indeed, q is not FO(<)-rewritable iff we can guess w ∈ B and I such that max(I) < 2c1512

and only one of vI and vI<c belongs to LΞ(q). By Lemma 33, we can check membership in1513

LΞ(q) using an NP-oracle, so the problem is in coNPNP = Πp
2.1514

We show the matching lower bound by reduction of ∀∃3CNF. Suppose we are given a1515

QBF ∀X∃Y φ with a 3CNF φ, X = {x1, . . . , xn} and Y = {y1, . . . , ym}. We construct an1516

LTL⃝
core OMPEQ qφ = (Oφ,κφ) such that qφ is FO(<)-rewritable iff ∀X∃Y φ(X,Y ) is true.1517

We use atomic concepts Aji , for 1 ≤ i ≤ m, 0 ≤ j ≤ pm − 1, where pi is the i-th prime1518

number, z0 and z1, for z ∈ X ∪ Y , A and B. The ontology Oφ comprises the axioms1519

1520

A → A0
i , Aji → ⃝

FA
(j+1) mod pi

i , A0
i → y0

i , A1
i → y1

i ,1521

x0
i → ⃝

Fx
0
i , x1

i → ⃝
Fx

1
i , B → ⃝

F
⃝

FB.15221523

The size of the ontology |Oφ| is polynomial of |X| + |Y | because pm = O(m logm). Let φ′

result from φ by replacing all xi with x1
i , all ¬xi with x0

i , and similarly for the yj . We set

κφ = A ∧
n∧
i=0

(x0
i ∨ x1

i ) ∧ (B ∨ 3Fφ
′).

We now show that qφ is as required. Suppose ∀X∃Y φ(X,Y ) is true. Consider an ABox A
with the answer yes. There is t ∈ Z such that Oφ,A |= κφ(t). We know that then A(t) ∈ A,
and Oφ,A |=

∧n
i=0(x0

i ∨ x1
i ). This means that, for every i, there is x0

i (s) or x1
i (s) in A, for

some s ≤ t. There is an assignment for as1 ∈ 2X such that Oφ,A |= x
as1(i)
i (s) for all s > t.

For this assignment, there exists a corresponding assignment of as2 ∈ 2Y . There is a number
r such that rmod pi = as2(i) for all i ≤ m. Therefore Oφ,A |= y

as2(i)
i , Oφ,A |= φ′(t+ r),

and so Oφ,A |= 3Fφ
′(j). Thus, the sentence

∃t
(
A(t) ∧

n∧
i=0

∃s
(
(s ⩽ t) ∧ (x0

i (s) ∨ x1
i (s))

) )
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is an FO(<)-rewriting of qφ.1524

If ∀X∃Y φ(X,Y ) is false, then there is an assignment as ∈ 2X to the variables in X1525

such that φ is false for any assignments to Y . Let Xas = {A} ∪
⋃n
i=1{xas(xi)

i }. Consider1526

A = {B(0)} ∪
⋃
x∈Xas

x(l) for some l > 0. If the certain answer to qφ over A is yes, then1527

Oφ,A |= κφ(l). Therefore Oφ,A |= B(l) since Oφ,A ̸|= 3Fφ
′(l). This means that, for1528

w = {B}Xas, the language Lw is L(∅∗{B}(∅∅)∗Xas∅∗) and not star-free, and therefore qφ1529

is not FO(<)-rewritable by Lemma 36.1530

This picture illustrates the intended models of Oφ and A = {A(0), x1
1(0), x0

2(0)} for the1531

formula φ = ∀x1, x2∃y1, y2 ((x1 = y1) ∧ (x2 = y2)):1532

A

A0
1 A1

1 A0
1 A1

1 A0
1 A1

1

y0
1 y1

1 y0
1 y1

1 y0
1 y1

1

A0
2 A1

2 A2
2 A0

2 A1
2 A2

2

y0
2 y1

2 y0
2 y1

2

x1
1 x1

1 x1
1 x1

1 x1
1 x1

1 x1
1

x0
2 x0

2 x0
2 x0

2 x0
2 x0

2 x0
2

This completes the proof of Theorem 32. ❑1533

If we slightly increase the expressive power of LTL⃝
core OMPEQs q = (O,κ) by allowing1534

2-operators in κ, the problem of deciding FO(<)-rewritability becomes more complex:1535

▶ Theorem 38. Deciding FO(<)-rewritability of Boolean and specific LTL⃝
core OMPQs is1536

PSpace-complete1537

Proof. By Proposition 15 and Lemma 14, it suffices to prove this theorem for Boolean1538

LTL⃝
core OMPQs. The upper bound follows from Theorem 27 as core OMQs are linear Horn1539

OMQs.1540

To prove the matching lower bound, we reduce the PSpace-complete DFA intersection1541

problem (see, e.g., [14,21]) to OMQ rewritability. Let A1, . . . ,An with Ai = (Qi,Σ, δi, qi0, Fi)1542

be a sequence of DFAs that do not accept the empty word, have a common input alphabet,1543

and disjoint sets of states.1544

Let Qi = {qi1, . . . , qiji
}. Consider the following ontology O with atomic concepts1545

{X,Y,B} ∪
⋃
i∈[1,n] δi:1546

(qik, a, qil) ∧ (qim, b, qin) → ⊥, if k ̸= m or l ̸= n,1547

(qik, a, qil) ∧ ⃝
F (qim, b, qin) → ⊥, if l ̸= m,1548

(qik, a, qil) ∧ (qjm, b, qjn) → ⊥, if a ̸= b,1549

X ∧ ⃝
F (qik, a, qil) → ⊥, for k ̸= 0,1550

(qik, a, qil) ∧ ⃝
FY → ⊥, for qil /∈ Fi,1551

X ∧ ⃝
FY → ⊥,1552

Y → ⃝
FY,1553

B → ⃝
F

⃝
FB.15541555
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Set1556

κ = C ∧X ∧ 2F

(( ∧
i∈[1,n]

∨
(r,a,s)∈δi

(r, a, s)
)

∨ Y
)
.1557

We claim that the OMQ q = (O,κ) is FO(<)-rewritable over Ξ-ABoxes, for Ξ = sig(q), iff1558 ⋂
i∈[1,n] L(Ai) = ∅. The picture below illustrates the structure of the intended models:1559

B B B,X

(q1
0 , a1, q

1
j1 )

. . .
(qn

0 , a1, q
n
j1 )

(q1
jk−1

, ak, q
1
jk

)
. . .

(qn
jk−1

, ak, q
n
jk

) Y Y
1560

1561

(⇐) If
⋂
i∈[1,n] L(Ai) = ∅, then, for any ABox A, we have O,A |= κ(k) iff the ABox A is1562

inconsistent with O. It follows that the disjunction Q of the following sentences (describing1563

different cases of how A can be inconsistent with O)1564 ∨
i

∨
k ̸=m,l ̸=n

∃s((qik, a, qil)(s) ∧ (qim, b, qin)(s))1565

∨
i

∨
l ̸=m

∃s((qik, a, qil)(s) ∧ (qim, a, qin)(s+ 1))1566

∨
i,j

∨
a̸=b

∃s((qik, a, qil)(s) ∧ (qjm, b, qjn)(s))1567

∨
i

∨
k>0

∃s
(
X(s) ∧ (qik, a, qil)(s+ 1)

)
1568 ∨

A∈{X}∪{(r,a,s)|s/∈
⋃

i
Fi}

∃s, s′ ((s ≤ s′ + 1) ∧A(s′) ∧ Y (s))1569

1570

is an FO(<)-rewriting of q.1571

(⇒) Let w = w1 . . . wk ∈
⋂
i∈[1,n] L(Ai). For i ∈ [1, n] and j ∈ [0, k], there exists qij ∈ Qi1572

such that (qij−1, wj , q
i
j) ∈ δi. Let wA = {B}, wB = ∅ and wC be the word corresponding to1573

the ABox C = {X(0)} ∪
(⋃

i∈[1,n]
⋃
j∈[1,k]{(qij−1, wj , q

i
j)(j)}

)
∪ {Y (k + 1)}. We see that a1574

word of the form wAw
n
BwC is in LΞ(q) iff n is odd. Therefore, LΞ(q) is not star-free, and q1575

is not FO(<)-rewritable. ❑1576

The reason causing the complexity gap between Theorems 32 and 38 can be explained by1577

the rising combined complexity of answering LTL⃝
core OMPQs, established by the following1578

theorem, which should be compared with Lemma 33:1579

▶ Theorem 39. Given an LTL⃝
core OMPQ q(x) = (O,κ(x)) and x ∈ Z, checking whether1580

O,A |= κ(x) is PNP[O(logn)]-complete.1581

Proof. As we saw above, checking whether O,A |= A(x), for atomic A, is in P. Therefore,1582

for φ without temporal operators, but possibly with atoms of the form (x ≥ k), for some1583

k ∈ Z, checking whether O,A |= φ(x) is also in P. We call such formulas simple. For any1584

simple φ and any ◦ ∈ {2F ,2P ,3F ,3P }, the set of x such that O,A |= ◦φ(x) is either empty,1585

the whole line, or a half-line. Therefore, in the canonical model of O and A, either ◦φ(x) is1586

equivalent to ⊤, ⊥, or there is t ∈ [min A − c,max A + c], for some c = 2O(|O|), such that1587

◦φ(x) is equivalent to x < t for ◦ = 2P ,3F or t < x for ◦ = 2F ,3P . We can find the precise1588

equivalent (in the canonical model) atomic formula in NP. So we can find the equivalent1589

formulas for the subformulas of κ of the form ◦φ, replace them with these atomic formulas,1590

and repeat until we arrive to a single simple formula that can be evaluated in P at the1591
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given point. Therefore the combined complexity of LTL⃝
core OMPQs belongs to the class1592

TREES(NP), which is equivalent to PNP[O(logn)] (see [32] for details).1593

To prove the matching lower bound, consider the PNP[O(logn)]-complete problem of1594

checking validity in Carnap’s modal logic. Carnap’s modal logic is a nonstandard modal1595

logic that differs substantially from the better-known Lewis’ systems. In Carnap’s modal1596

logic, a subformula 3ψ of a formula φ evaluates to true if ψ is a consistent formula, and a1597

subformula 2ψ evaluates to true iff ψ is valid. Each modal subformula of φ is evaluated1598

independently of its context in φ.1599

The sentences true in Carnap’s modal logic are precisely those sentences that are true1600

in the fully connected Kripke structure, where each world corresponds to a finite set of1601

propositional atoms made true, and each such set corresponds to precisely one world (see [32]).1602

Let var be a finite set of propositional variables. Let Svar be the fully connected Kripke1603

structure, where each world corresponds to a finite set of propositional atoms from var made1604

true, and each such set corresponds to precisely one world.1605

Let pi be the i-th prime number and let Pn =
∏n
i=1 pi.1606

We construct an LTL⃝
core ontology Ovar in the following way. The set of atomic concepts1607

in it is1608

{Aij | 1 ⩽ i ⩽ n, 0 ⩽ j ⩽ pn − 1} ∪ {Xi, Xi | Xi ∈ var} ∪ {A,B}.1609

The axioms of Ovar are1610

A → Ai0, for 1 ⩽ i ⩽ n,1611

Aij → ⃝
FA

i
(j+1) mod pi

,1612

Ai0 → Xi,1613

Ai1 → Xi,1614

Aij → B, for 1 ⩽ j ⩽ pn − 2.1615
1616

One can see that |Ovar| is polynomial in |var|.1617

Let φ(x1, . . . , xn) be a formula built from xi, 0, 1,∨,∧,¬,2,3 in negation normal form1618

with all the variables from var. Define κφ inductively as follows:1619

κxi
= Xi,1620

κ¬xi
= Xi,1621

κφ∨ψ = φ ∨ ψ1622

κφ∧ψ = φ ∧ ψ1623

κ2φ = 2F (B ∨ φ)1624

κ3φ = 3F (φ).1625
1626

Consider A = {A(0)}. For any world w ∈ Svar, there exists exactly one nw < Pn such that1627

nw = 0 modpi iff xi /∈ w and nw = 1 modpi iff xi ∈ w. We see that, for any Boolean formula1628

ψ, we have Ovar,A |= ψ(nw) iff ψ is true in w. Then, for any k > 0, we have Ovar,A |= ψ(k)1629

iff Ovar,A |= ψ(k+Pn) and if ψ is a tautology then Ovar,A |= ψ ∨B(k). By induction on the1630

construction of φ one can show that Ovar,A |= 2Fκφ(0) iff φ is valid in Carnap’s logic. ❑1631

8 Conclusions1632

Motivated by ontology-based access to temporal data—a paradigm relying on FO-rewritability1633

of ontology-mediated queries—we considered the problem of determining the optimal rewrit-1634

ability type and data complexity of answering any given LTL OMQ. We showed that this1635
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problem is closely related to deciding FO(<)-, FO(<,≡)- and FO(<,MOD)-definability of1636

regular languages given by DFAs, NFAs and 2NFAs of different size. Various characterisations1637

of FO(<)-definability of the languages of DFAs/NFAs, deciding which is PSpace-complete,1638

have long become classical results in automata theory. Here, we extended some of them1639

to FO(<,≡), FO(<,MOD) and 2NFAs, establishing the same PSpace complexity bound.1640

Based on these results, we showed how the clausal form of ontology axioms in OMQs, the1641

temporal operators involved and the type of queries are reflected in the structure of automata1642

accepting the OMQs’ yes-data instances and the complexity of deciding their FO-definability.1643

Interesting open problems include understanding the impact of the 2-operators in linear1644

and core ontologies on the complexity of deciding FO-rewritability, extending our analysis to1645

MTL-ontologies where OMQs are not necessarily FO(RPR)-rewritable, and so are outside of1646

NC1, and to 2D combinations of LTL with description logics, in particular DL-Lite.1647
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